
TIER IV

Rustでつくる

オペレーティングシステム

SWEST 27
高野祐輝, TIER IV

2025 / 08 / 28-29

1
This research is based on results obtained from a project, JPNP21027, subsidized by the
New Energy and Industrial Technology Development Organization (NEDO).

TIER IV

Rustでつくる
オペレーティングシ

ステム
SWEST 27

髙野 祐輝, TIER IV

01 / Self Introduction

02 / Background and Motivation

03 / Related Work

04 / Rust

05 / Awkernel

06 / Async/await of Awkernel

07 / Implementation

08 / Demonstration

09 / Conclusion and Future Work

2

Self Introduction

01
3

TIER IV

Self Introduction
Name: Yuuki Takano (高野 祐輝)

Affiliation: TIER IV, Inc.

Books:『ゼロから学ぶRust』講談社, 2022,

『並行プログラミング入門』オライリー・ジャパン, 2021

韓国語版

4

Background and Motivation

02
5

TIER IV

Background

1. Automobile system meets micro service

2. Microservices are facing performance penalty of inter-process

communications

3. Automobile system requires security and safety

4. We propose Awkernel, a secure single-layered operating

system, as a high performance microservice infrastructure for

automobile system
6

TIER IV

Awkernel

1. Single address space

2. Memory space isolation by using Rust’s type system

3. Lightweight Formal Methods

4. Preemptible async/await APIs

5. Microkernel style services by async/await tasks

7

TIER IV

Classification of OSes and Our Direction

8

Related Work

03
9

TIER IV

Operating System Written in Rust

1. RedLeaf (USENIX OSDI 2022), Single address space

2. Theseus (USENIX OSDI 2022), Single address space

3. Rust for Linux, monolithic kernel, https://rust-for-linux.com/

4. Windows Kernel, monolithic kernel

https://www.theregister.com/2023/04/27/microsoft_windows_rust/

5. Redox OS, micro kernel, https://www.redox-os.org/

10

https://rust-for-linux.com/
https://www.theregister.com/2023/04/27/microsoft_windows_rust/
https://www.redox-os.org/

TIER IV

An Empirical Study of Rust-for-Linux
Latency of e1000 device driver

Hongyu Li, Liwei Guo, Yexuan Yang, Shangguang Wang, and Mengwei Xu. An Empirical Study of Rust- for-Linux: The Success,
Dissatisfaction, and Compromise. In 2024 USENIX Annual Technical Conference (USENIX ATC 24), pages 425–443, Santa Clara, CA, July
2024. USENIX Association.

11

TIER IV

An Empirical Study of Rust-for-Linux
Code Quality

Hongyu Li, Liwei Guo, Yexuan Yang, Shangguang Wang, and Mengwei Xu. An Empirical Study of Rust- for-Linux: The Success,
Dissatisfaction, and Compromise. In 2024 USENIX Annual Technical Conference (USENIX ATC 24), pages 425–443, Santa Clara, CA, July
2024. USENIX Association.

12

TIER IV

Other Operating Systems

1. FlexOS, configurable, (ACM ASPLOS 2022)

2. seL4, micro kernel

3. Unikraft, single address space

13

TIER IV

FlexOS

1. Isolation domains and safety mechanisms can be flexibly configurable.

2. FlexOS can define isolation domains, and a process chooses an isolation

domain when executing.

3. FlexOS can choose whether using safety mechanisms like address space

layout randomization (ASLR).

Hugo Lefeuvre, Vlad-Andrei Badoiu, Alexander Jung, Stefan Lucian Teodorescu, Sebastian Rauch, Felipe Huici, Costin Raiciu, and Pierre
Olivier. FlexOS: to- wards flexible OS isolation. In Babak Falsafi, Michael Ferdman, Shan Lu, and Thomas F. Wenisch, edi- tors, ASPLOS
’22: 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, 28 February 2022 - 4 March 2022, pages 467–482. ACM, 2022. 14

TIER IV

FlexOS: Performance Evaluation

Hugo Lefeuvre, Vlad-Andrei Badoiu, Alexander Jung, Stefan Lucian Teodorescu, Sebastian Rauch, Felipe Huici, Costin Raiciu, and Pierre
Olivier. FlexOS: to- wards flexible OS isolation. In Babak Falsafi, Michael Ferdman, Shan Lu, and Thomas F. Wenisch, edi- tors, ASPLOS
’22: 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, 28 February 2022 - 4 March 2022, pages 467–482. ACM, 2022.

← strong isolation and safety mechanisms weak isolation and safety mechanisms →

15

Rust

04
16

TIER IV

Programming Language Rust

1. Safe: type safety, memory safety

2. Fast: as fast as C/C++

3. Rich ecosystem: documentation comment,

sophisticated build system

4. Suitable for real-time system: no garbage collection

17

TIER IV

Why Rust?

1. Protecting critical infrastructures
ex: nuclear power plants
A nuclear power plant was attacked by using a buffer overrun vulnerability
Rust can prevent (stuxnet).

2. Mitigating security risk
3. Reduce development cost

Debugging accounts for the majority of development time.

18

TIER IV

CVE VS. Protection Level: Definition

1. Rare and Difficult (RD): Issues which are rare and difficult to find、

but the language can prevent these issues

2. Safeguarded (SG): Issues can be prevented by using the language,

but additional countermeasures will be required in some cases

3. Unprotected (UP): Issues the language cannot prevent

19

Tiago Espinha Gasiba, Sathwik Amburi, and Andrei-Cristian Iosif, Can Secure Software be Developed in Rust? On Vulnerabilities and
Secure Coding Guidelines, International Journal on Advances in Security, vol 17 no 1 & 2, year 2024

TIER IV

CVE VS. Protection Level: Comparison

20

Tiago Espinha Gasiba, Sathwik Amburi, and Andrei-Cristian Iosif, Can Secure
Software be Developed in Rust? On Vulnerabilities and Secure Coding Guidelines,
International Journal on Advances in Security, vol 17 no 1 & 2, year 2024

TIER IV

Static analysis against C/C++

21
Mario Noseda, Fabian Frei, Andreas Rüst, and Simon Künzli, Rust for Secure IoT Applications: Why C Is Getting Rusty, Embedded World
Conference, Nuremberg, Germany, 21-23 June 2022.

They prepared several bugs, and

evaluated static analysis tools of

C/C++.

TIER IV

Pitfalls of Static Analyzers

1. Many false positives

2. Need much effort to apply static analyzers

22

TIER IV

C, Zig, and Rust Memory Safety Comparison

23
Mario Noseda, Fabian Frei, Andreas Rüst, and Simon Künzli, Rust for Secure IoT Applications: Why C Is Getting Rusty, Embedded World
Conference, Nuremberg, Germany, 21-23 June 2022.

C

None
None
None
None
None
None
None
None
None

TIER IV

Crypto Benchmark

24
Mario Noseda, Fabian Frei, Andreas Rüst, and Simon Künzli, Rust for Secure IoT Applications: Why C Is Getting Rusty, Embedded World
Conference, Nuremberg, Germany, 21-23 June 2022.

TIER IV

Must Use Rust?

1. If you have a complete understanding of C/C++,
then Rust is unnecessary.

2. If you work together with junior developers, Rust
should be useful.

25

Awkernel

05
26

TIER IV

Awkernel (revisit)

1. Single address space

2. Memory space isolation by using Rust’s type system

3. Lightweight Formal Methods

4. Preemptible async/await APIs

5. Microkernel style services by async/await tasks

27

TIER IV

Awkernel is open source software

https://github.com/tier4/awkernel

Search “awkernel” at GitHub.

28

https://github.com/tier4/awkernel

HW Isolation Type System
Isolation
(Partially)

Type System
Isolation

Single Address
Space

Formal Methods

Awkernel ✓ ✓ ✓

seL4 ✓ ✓

FlexOS ✓
(configurable)

✓
(configurable)

Singularity ✓

RedLeaf ✓ ✓

Theseus ✓ ✓

Unikernel ✓

29

Comparison

TIER IV

Memory Space Isolation

● Type system based isolation (Type safe programming language), Our approach
○ Pros

■ No runtime error
■ Least performance penalty
■ Single Address Space

○ Cons
■ Limited support of programming languages

● Hardware based isolation (MMU)
○ Pros

■ Support any executable binary
○ Cons

■ Runtime error
■ Performance penalty

30

TIER IV

Formal Methods

● Model Checking, Our Approach
○ Pros: Lightweight
○ Cons: Does not prove theorem

● Theorem provering
○ Pros: Provable
○ Cons: Difficult to use, Heavyweight
○ seL4 required 20 person-years for verification

31

TIER IV

Applying Formal Methods to Basic Functions

32

Targets Properties Tools

MCSLock Mutual exclusion on weak memory model loom

RWLock Mutual exclusion on weak memory model loom

Store and restore registers of
preemption
(AArch64 and x86_64)

Registers are properly restored TLA+

Delta list Timers are really invoked Kani

Ring queue Push/pop operations are really FIFO Kani

Scheduler and CPU sleep Work conservation SPIN

Scheduler Priority SPIN

TIER IV

Test of Async/await Scheduler

1. We translate source code in Rust to Promela, and test it by using SPIN
a. Promela: Language for specification
b. SPIN: Model checker

2. Test properties
a. Starvation-free
b. Eventually all tasks will be terminated

33

Source Code
in Rust

Spec
in Promela

Manual
Translation

SPIN
Model

Checker
Result

TIER IV

Rust vs Promela

34

inline get_next(tid) {
 lock(tid, lock_scheduler);

 int head;

start_get_next:

 if
 :: atomic { queue ? [head] -> queue ? head };
 lock(tid, lock_info[head]);

 if
 :: tasks[head].state == Terminated ->
 unlock(tid, lock_info[head]);
 goto start_get_next;
 :: else -> skip;
 fi

 tasks[head].state = Running;

 printf("Running: task = %d, state = %d\n", head,
tasks[head].state);

 unlock(tid, lock_info[head]);
 unlock(tid, lock_scheduler);

 result_next[tid] = head;
 :: else ->
 unlock(tid, lock_scheduler);
 result_next[tid] = -1;
 fi
}

 fn get_next(&self) -> Option<Arc<Task>> {
 let mut node = MCSNode::new();
 let mut data = self.data.lock(&mut node);

 // Pop a task from the run queue.
 let data = match data.as_mut() {
 Some(data) => data,
 None => return None,
 };

 loop {
 let task = data.queue.pop_front()?;

 // Make the state of the task Running.
 {
 let mut node = MCSNode::new();
 let mut task_info = task.info.lock(&mut
node);

 if matches!(task_info.state,
State::Terminated | State::Panicked) {
 continue;
 }

 task_info.state = State::Running;
 }

 return Some(task);
 }
 }

Async/await of Awkernel

06
35

TIER IV

Kernel-level async/await

36

1. Awkernel provides async/await runtime in kernel.
2. Why async/await?

a. Cyber-physical systems are inherently asynchronous.
b. Callback based programs are suffer from the callback

hell.
3. Problems of conventional async/await runtime libraries.

a. Non-preemptible
b. Multiple scheduling domain

TIER IV

Problems regarding non-preemptible task schedulers

37

1. Almost real-time scheduling algorithms depend on
preemption.
Example: Earliest deadline first

2. Conventional async/await mechanisms cannot take advantage
of real-time scheduling algorithms.

TIER IV

The multiple scheduling domain problem

38

● It is hard to apply scheduling policies to async/await tasks.

async/await
task

async/await
task thread thread

async/await runtime scheduler kernel scheduler

Use the earliest deadline policy.How to apply policies?

? ?

TIER IV

Conventional Async/await

39

1. Async/await tasks are on top of worker threads
2. Cooperative multitasking
3. Multiple scheduling domain

Thread 1

CPU1

Thread 2

CPU2

Thread 3

CPU3CPU0

Thread 0

Async/await
Task 1

Async/await
Task 2

Async/await
Task 3

Async/await
Task 0

TIER IV

Microkernel Style Services

40

Intel GbE
Device Driver

(queue #0)
as Async/await Task

CPU1

Intel GbE
Device Driver

(queue #1)
as Async/await Task

CPU2

Network
Service

CPU3

Scheduler
Interrupt Handler

CPU0

Intel GbE

interrupt RX/TX queues

CPU4

TCP/IP
Server

CPU5

Shell

wake()

Async/await
Task

TIER IV

In-kernel Preemptible Async/await

41

1. Preemptible
2. Single scheduling domain
3. Can specify a scheduling policy to a task

TIER IV

Task Spawning

42

awkernel_async_lib::spawn(
 "task name".into(),
 async { /* do something */ },
 SchedulerType::RR, // Round robin scheduler
)
.await;

TIER IV

● Processes switch context cooperatively or
preemptively.

● Store/restore registers when context
switch.

Process 1:
Interrupt, Syscall

Process 2:
Restore Registers from Context

Process 1:
Store Registers to Context

Process 1:
Running

Process 2:
Running

Stack
Memory2

Stack
Memory1

Preemptive or Cooperative

43

Context Switch of Conventional OSes

TIER IV

● Async/await tasks switch context
cooperatively.

● Do not store and restore registers.

● Use a shared stack memory.

Task 1:
Future::poll() returns Poll::Pending

Task 2:
Call Future::poll()

Task 1:
Running

Task 2:
Running

Process 1:
Call Future::poll()

Stack
Memory

Cooperative

44

Context Switch of Async/await in Rust

TIER IV

Task 1:
Future::poll() returns Poll::Pending

Task 2:
Call Future::poll()

Task 1:
Running

Task 2:
Running

Process 1:
Call Future::poll()

Stack
Memory1

Task 2:
Interrupt

Stack
Memory2

Task 3:
Restore Registers from Context

Task 2:
Store Registers to Context

Task 3:
Running

Cooperative

Preemptive

45

Context Switch of Awkernel

Implementation

07
46

TIER IV

Target Architectures

47

● x86_64

● AArch64

○ Raspberry Pi Zero 2W/3/4

○ Qemu virt

Awkernel on Raspberry Pi 4

TIER IV

Device Drivers

48

● Network Interfaces

○ Intel GbE

○ Intel 10GbE

○ Broadcom bcmnet (Raspberry Pi)

● Interrupt Controllers

○ xAPIC, x2APIC

○ bcm2835 interrupt controller

○ GICv2, GICv3 for AArch64

● Raspberry Pi’s IO: GPIO, PWM, I2C, SPI

TIER IV

Networking

49

● Use external TCP/IP library

● smoltcp
https://github.com/smoltcp-rs/smoltcp

https://github.com/smoltcp-rs/smoltcp

TIER IV

Block Devices and File Systems

50

Ongoing…

TIER IV

Applications

51

● Velodyne VLP16 LiDAR driver
● Localization using Iterative

closest first (ICP)

ICP on Awkernel

Demonstration

08
52

TIER IV

> (ifconfig)
[0] igb-0000:00:1f.6:
 IPv4 address: 192.168.100.64/24
 IPv4 gateway: None
 MAC address: cc:96:e5:1c:87:c7
 Link status: Up (Full duplex), Link speed: 100 Mbps
 Capabilities: CSUM_TCPv4 CSUM_UDPv4 VLAN_MTU VLAN_HWTAGGING
 IRQs: [32]
 Poll mode: false

[1] igb-0000:5b:00.0:
 IPv4 address:
 IPv4 gateway: None
 MAC address: 98:b7:85:01:9a:08
 Link status: Up (Full duplex), Link speed: 1000 Mbps
 Capabilities: CSUM_IPv4 CSUM_TCPv4 CSUM_UDPv4 VLAN_MTU VLAN_HWTAGGING
CSUM_TCPv6 CSUM_UDPv6
 IRQs: [33, 34, 35, 36, 37, 38, 39, 40, 41]
 Poll mode: false 53

(ifconfig) function

TIER IV

> (task)
Uptime: 1498571515
Tasks:
 ID State #Preemption Last Executed name
 2 Waiting 0 17027421 network service
 3 Waiting 4 1498556182 TCP garbage collector
 4 Waiting 1 1497869930 network service:igb-0000:00:1f.6: IRQ = 32
 5 Waiting 1 1461841869 network service:igb-0000:5b:00.0: IRQ = 33
 6 Waiting 0 17044581 network service:igb-0000:5b:00.0: IRQ = 34
 7 Waiting 0 16957795 network service:igb-0000:5b:00.0: IRQ = 35
 8 Waiting 0 17062003 network service:igb-0000:5b:00.0: IRQ = 36
 9 Waiting 0 16957853 network service:igb-0000:5b:00.0: IRQ = 37
 10 Waiting 0 16957906 network service:igb-0000:5b:00.0: IRQ = 38
 11 Waiting 0 16957959 network service:igb-0000:5b:00.0: IRQ = 39
 12 Waiting 0 16958012 network service:igb-0000:5b:00.0: IRQ = 40
 13 Waiting 0 21046736 network service:igb-0000:5b:00.0: IRQ = 41

54

(task) function

Conclusion and Future Work

09
55

TIER IV

Conclusion

56

1. Rust is safe

a. Safety of Rust have been studied by several academic papers.

b. Rust and Java can prevent 6 and 5 of Top 25 CWEs C/C++ cannot
prevent, respectively.

2. Developing Awkernel

a. Single address space operating system

b. Tested by using formal methods

c. Preemptible async/await

d. Single scheduling domain

TIER IV

Future Work of Awkernel

57

● Block device and file systems
● Performance evaluation
● Apply to autonomous driving systems

TIER IV

CONTACT US

https://tier4.jp/

Thanks Again !
58

