IIIIII

Rust TD2<K%

ARV—TAV T VAT L
@TIERN SWEST 27

= ErthiE, TIER IV

2025 / 08 / 28-29

This research is based on results obtained from a project, JPNP21027, subsidized by the
New Energy and Industrial Technology Development Organization (NEDO).

Rust TD2<K%
ARL—TaTY
AT L
SWEST 27
B % 18, TIER IV

TIER IV

01/ Self Introduction

02 / Background and Motivation
03 / Related Work

04 / Rust

05 / Awkernel

06 / Async/await of Awkernel

07 / Implementation

08 / Demonstration

09 / Conclusion and Future Work

Self Introduction

TIER IV

Name: Yuuki Takano (5% thi&)

Affiliation: TIER IV, Inc.

Books:[Z AN B SRustlZEEK#+t, 2022,

477093329 AMIA 54"

5%/
Rust

SRAFLTOISIITORBEDL S
BRI 2T LET

-\, 2021

OREILLY" OREILLY’ BEZEM

FSAU—-TpI\V

H77y0o5sv4 Concurrent
AP9 Programming

Rust. C. 7EVIUICED SAME =229
KEHSOFIO—F

Rust, C, 044§ 2|0{2 R3is10] viE
SANY ERIAYA0Z

N N\N
e
\f‘@e 0‘«\“6”:" S
w{:":‘“
0#" 18
P
s
()

BN
AR
QEAUCRN
& h@:}“({:«.

%
Lo
o

<<

l
PN
&4

ans /71 1E
UM B

Background and Motivation

02

IIIIII

Background

1. Automobile system meets micro service

2. Microservices are facing performance penalty of inter-process

communications
3. Automobile system requires security and safety

4. We propose Awkernel, a secure single-layered operating
system, as a high performance microservice infrastructure for

automobile system

IIIIII

Awkernel

1. Single address space

2. Memory space isolation by using Rust’'s type system
3. Lightweight Formal Methods

4. Preemptible async/await APls

5. Microkernel style services by async/await tasks

IIIIII

Classification of OSes and Our Direction

Performance

OA
5| |Micro/Separation| _
v kernels o= e
) \ Awkernel
25
g = \ \
- \
8 o Monolithic \ g)_ur rte?seach
2 g gkej’nils \\ irection
? T = Single address space
& kernels
3
Slower Faster

>

IIIIII

Operating System Written in Rust

1. RedLeaf (USENIX OSDI 2022), Single address space

2. Theseus (USENIX OSDI 2022), Single address space

3. Rust for Linux, monolithic kernel, https://rust-for-linux.com/

4. Windows Kernel, monolithic kernel

https://www.theregister.com/2023/04/27/microsoft_windows_rust/

5. Redox OS, micro kernel, https://www.redox-os.orqg/

https://rust-for-linux.com/
https://www.theregister.com/2023/04/27/microsoft_windows_rust/
https://www.redox-os.org/

TIER IV

An Empirical Study of Rust-for-Linux

Latency of e1000 device driver

NN

Latency (ms)

§_‘ .
N

el000 binder
Driver name

Figure 8: The latencies between Rust and C drivers. Rust
e1000 driver is significantly slower because it lacks advanced

features such as prefetch.

Hongyu Li, Liwei Guo, Yexuan Yang, Shangguang Wang, and Mengwei Xu. An Empirical Study of Rust- for-Linux: The Success,
Dissatisfaction, and Compromise. In 2024 USENIX Annual Technical Conference (USENIX ATC 24), pages 425-443, Santa Clara, CA, July

2024. USENIX Association.

TIER IV

An Empirical Study of Rust-for-Linux
Code Quality

Table 6: The code quality measurement. % means coverage.
RFL achieves 100% documentation coverage and least CI
errors per 10K LoC.

Subsystems Docs% CI errors/10K LoC

RFL 100% 3.8
ebpf 15% 7.5
10_uring 31% 11.9

Hongyu Li, Liwei Guo, Yexuan Yang, Shangguang Wang, and Mengwei Xu. An Empirical Study of Rust- for-Linux: The Success,
Dissatisfaction, and Compromise. In 2024 USENIX Annual Technical Conference (USENIX ATC 24), pages 425-443, Santa Clara, CA, July
2024. USENIX Association.

IIIIII

Other Operating Systems

1. FlexOS, configurable, (ACM ASPLOS 2022)

2. selL4, micro kernel

3. Unikraft, single address space

TIER IV

FlexOS

1. Isolation domains and safety mechanisms can be flexibly configurable.

2. FlexOS can define isolation domains, and a process chooses an isolation

domain when executing.

3. FlexOS can choose whether using safety mechanisms like address space

layout randomization (ASLR).

Hugo Lefeuvre, Viad-Andrei Badoiu, Alexander Jung, Stefan Lucian Teodorescu, Sebastian Rauch, Felipe Huici, Costin Raiciu, and Pierre
Olivier. FlexOS: to- wards flexible OS isolation. In Babak Falsafi, Michael Ferdman, Shan Lu, and Thomas F. Wenisch, edi- tors, ASPLOS
'22: 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, 28 February 2022 - 4 March 2022, pages 467—482. ACM, 2022.

TIER IV

1on

Performance Evaluati

FlexOS

AT en——

plojo|e|e|o]e|o|o]|e|o]o|0|O]e|e|c|e|0|e|C|O

QOE0C

(o] L1 (=1 =] (=2 k=] =) (=] [=d (=2 k=] K] ko] [=d (= (=] £e] ke [=d (=] (=] K=l kel) (=) (=) Kol el ke () (o)

Hii

0|o]|oje|e]

100E0BR0OROED

jelojoj|ole|oje|ele|o|e|O]C

ole|o|e|e|O|o|e|e]O

%2 L0e
307108
A0126g

eolefe[efe]e[e]e|e[e]e[c]0[e[o]|0[0]|0[e[c[0]e]e|c]o[c]e|e]e]c[e[e|e][c]c][ce|e]e[c]e[e]e[c]e][c|e[e[oc]e][o]e|c][o]e|o]o]o]o]c]e|e|e[c]c]e|e]e[c]o]e|oc]o|c]o]o]o]o]o]o

o|o|o|0 (0000000 0000000000000 000000000000 O|0|0|@(O|O|O|@|O|®|O(O|®

olejoje|ojo|e|e|o|e]

OEC

elejoje|c|e]|e|e[o[o]o]e]|o|o[e|e|c]e|e|e|e|e|e|c]|o]|o]|o|o|e(o]o]|c|e|e|e|e|e]|e|e|o|o[ocfe|oc]o]|e|o|e[o]o]o]|o|e]|e|e|c|e|e|o]|e|e|e|o]e|[oc]e]|o|ofo|o[o]o]e]|e|e|ofe|o]o]0

redis
newlib

il
=
S
S
S
S
S

200000

o
S SO
S SO
S S
S SO
S SO
=) O

400000
200000

o
(=
o=
=
[=
e

1800000

uksched |@ |4

Iwip

HOle|O|@[Oje|C

olejole|e|C|e|O]:

[¢]

1EID0000B0EEDI

Ccle|e|C|O|e|e(Cl|e|e|C|eO|e(Cle|e|e(O|O0|C|O|O|O|C[O|O|C|O|O|C|O|O|O|O[0]|0|0

IBEOEBO0DEEL

QlClejojO|O|e|O|O|OjOjO|O|O|e|o|OjojO|e|e|e|e|e|e|e(e0|e|e|O|0|O[0J0JO|0J0|0

oo

1B 0O0EEE

Ole|Cle|e|e|O]

olojo|o/o(0j0j0(000(0 0000 o0 Oje(C0|O|eO|e|C|O|O|0 (0|0

elejeje|C(Oje|e[e[C|e|O|Oj0]O|0[C|C[e|e|e|e|e|e|OCle|e|e(e[e|e|e|s]|C

oJee[e[e[e[e]e[e[e[e[e]e[e[e[e]e[e[e[e[C]e[C]e[e[e[C]e[Cle[e[e[c][o][C]C]e[e]e[e[C]e]e[c]C]e]e[c]c]e[o[c]e[c]e[c]e[o]c]o]o]olclo]o]olc]o[aolo]olc]elo]ole]ola]o

o] o]] e

(0001x) sasenbai
139 sipay abeiany

200000

uksched
Twip

(0001x) spsenbau
dny abeseny

Figure 6: Redis (top) and Nginx (bottom) performance for a range of configurations. Components are on the left. Software

hardening can be enabled [¢] or disabled [o] for each component. The white/blue/red color indicates the compartment the

component is placed into. Isolation is achieved with MPK and DSS.

weak isolation and safety mechanisms —

< strong isolation and safety mechanisms

Hugo Lefeuvre, Viad-Andrei Badoiu, Alexander Jung, Stefan Lucian Teodorescu, Sebastian Rauch, Felipe Huici, Costin Raiciu, and Pierre

Olivier. FlexOS: to- wards flexible OS isolation. In Babak Falsafi, Michael Ferdman, Shan Lu, and Thomas F. Wenisch, edi- tors, ASPLOS

'22: 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne,

Switzerland, 28 February 2022 - 4 March 2022, pages 467—482. ACM, 2022.

IIIIII

Programming Language Rust

1. Safe: type safety, memory safety
2. Fast: as fast as C/C++

3. Rich ecosystem: documentation comment,

sophisticated build system

4. Suitable for real-time system: no garbage collection

TIER IV

Why Rust?

1. Protecting critical infrastructures

ex: nuclear power plants
A nuclear power plant was attacked by using a buffer overrun vulnerability
Rust can prevent (stuxnet).

2. Mitigating security risk

Reduce development cost

Debugging accounts for the majority of development time.

TIER IV

CVE VS. Protection Level: Definition

1. Rare and Difficult (RD): Issues which are rare and difficult to find.

but the language can prevent these issues

2. Safeguarded (SG): Issues can be prevented by using the language,

but additional countermeasures will be required in some cases

3. Unprotected (UP): Issues the language cannot prevent

Tiago Espinha Gasiba, Sathwik Amburi, and Andrei-Cristian losif, Can Secure Software be Developed in Rust? On Vulnerabilities and
Secure Coding Guidelines, International Journal on Advances in Security, vol 17 no 1 & 2, year 2024

TIER IV Tiago Espinha Gasiba, Sathwik Amburi, and Andrei-Cristian losif, Can Secure
Software be Developed in Rust? On Vulnerabilities and Secure Coding Guidelines,

C V E VS P roi_ec_l_io n Le\,e | . C om pa r i son International Journal on Advances in Security, vol 17 no 1 & 2, year 2024

TABLE 1T
SANS TOP 25 CWE VS. PROTECTION LEVELS IN C, C++, AND
TABLE I JAVA
SANS TOP 25 CWE VS. PROTECTION LEVELS IN RUST
s CWE C C++ Java
[CWE ID | Short Description | RD | SG | UP | RD [SG| UP [RD[SG [UP [RD [SG | UP
CWE-787 | Out-of-bounds Write ° CWE-787 ° . °
CWE-79 Cross-site Scripting ° CWE-79 ° . °
CWE-89 SQL Injection ° CWE-89 ° ° °
CWE-20 Improper Input Validation ° CWE-20 ° ° °
CWE-125 | Out-of-bounds Read ° CWE-125 ° ° °
CWE-78 OS Command Injection . CWE-78 ° ° ®
CWE-416 | Use After Free . CWE-416 ® . °
CWE-22 Path Traversal ° CWE-22 ° ° °
CWE-352 | Cross-Site Request Forgery B CWE-352 ° ° °
CWE-434 | Unrestricted Dangerous File Upload ° CWE-434 ® ° °
CWE-476 | NULL Pointer Dereference ° CWE-476 ° ° °
CWE-502 | Deserialization of Untrusted Data ° CWE-502 ° ° °
CWE-190 | Integer Overflow or Wraparound ° CWE-190 ° o °
CWE-287 | Improper Authentication ° CWE-287 ° ° °
CWE-798 | Use of Hard-coded Credentials ° CWE-798 ° ° °
CWE-862 | Missing Authorization ° CWE-862 ° ° @
CWE-77 Command Injection ° CWE-77 . ° °
CWE-306 | Missing Critical Function Authentication ° CWE-306 ® . °
CWE-119 | Buffer Overflow ° CWE-119 ® . .
CWE-276 | Incorrect Default Permissions) CWE-276 ® . °
CWE-918 | Server-Side Request Forgery ° CWE-918 ° ° °
CWE-362 | Race Condition ° CWE-362 ® . °
CWE-400 | Uncontrolled Resource Consumption ° CWE-400 ° ° °
CWE-611 | Improper Restriction of XXE ° CWE-611 ° ° °
CWE-9%4 Code Injection ° CWE-%4 ° . °
24% | 28% | 48% 0% | 0% | 100% | 0% | 24% | 76% | 20% | 28% | 52%

TIER IV

Static analysis against C/C++

TABLE II: CHECKING IF SCA/DCA TOOLS FIND MEMORY BUGS.

Bug cppcheck splint GNU C/C++
sanitize
0 v v v
They prepared several bugs, and , § , g
2 v v v
evaluated static analysis tools of 5 missed v missed
4 missed v compile err.
C/ C ++. 5 v v missed
6 v v missed
7 missed v missed
8 v v partly
9 partly v partly
10 v missed missed
11 missed v missed
12 v v missed
13 missed v partly
14 v incompatible v
15 missed incompatible missed

Mario Noseda, Fabian Frei, Andreas Riist, and Simon Kiinzli, Rust for Secure loT Applications: Why C Is Getting Rusty, Embedded World
Conference, Nuremberg, Germany, 21-23 June 2022.

IIIIII

Pitfalls of Static Analyzers

1. Many false positives

2. Need much effort to apply static analyzers

TIER IV

C, Zig, and Rust Memory Safety Comparison

TABLE III: C, ZIG, AND RUST MEMORY SAFETY COMPARISON.

Issue Zig (release-safe) Rust (release) c
Out-of-bounds R/'W Run time Run time None
Null dereference Run time! Run time! None
Type confusion Run time!-2 Run time! None
Integer overflow Run time Run time! None
Use-after-free None! Compile time None
Double free None! Compile time None
Invalid stack R/W None Compile time None
Uninit. memory None Compile time None
Data race None Compile time None

1: Some restrictions apply, 2: Partial

Mario Noseda, Fabian Frei, Andreas Riist, and Simon Kiinzli, Rust for Secure loT Applications: Why C Is Getting Rusty, Embedded World
Conference, Nuremberg, Germany, 21-23 June 2022.

TIER IV

Crypto Benchmark

TABLE IV: RELATIVE DIFFERENCE IN EXECUTION TIME FOR CRYPTOGRAPHIC
ALGORITHMS WHEN SWITCHING FROM MBEDTLS (C) TO RUSTCRYPTO

(RusT).
Algorithm From C to Rust

SHA256 (16 B) -13%

SHA256 (64 KiB) -9%
AES128-CCM (16 B) + 145 %
AES128-CCM (64 KiB) +73 %
AES128-GCM (16 B) + 101 %
AES128-GCM (64 KiB) +20 %
CHACHA20-POLY1305 (16 B) -53%
CHACHA20-POLY1305 (64 KiB) -52%

Mario Noseda, Fabian Frei, Andreas Riist, and Simon Kiinzli, Rust for Secure loT Applications: Why C Is Getting Rusty, Embedded World
Conference, Nuremberg, Germany, 21-23 June 2022.

IIIIII

Must Use Rust?

1. If you have a complete understanding of C/C++,
then Rust is unnecessary.

2. If you work together with junior developers, Rust

should be useful.

IIIIII

Awkernel (revisit)

1. Single address space

2. Memory space isolation by using Rust’'s type system
3. Lightweight Formal Methods

4. Preemptible async/await APls

5. Microkernel style services by async/await tasks

IIIIII

Awkernel is open source software

https://qgithub.com/tier4/awkernel

Search “awkernel” at GitHub.

https://github.com/tier4/awkernel

Comparison

HW lIsolation Type System Type System Single Address Formal Methods
Isolation Isolation Space
(Partially)
Awkernel 4 v /
selL4 v
FlexOS v v
(configurable) (configurable)
Singularity v
RedLeaf v v
Theseus v v
Unikernel v

29

TIER IV

Memory Space Isolation

e Type system based isolation (Type safe programming language), Our approach
o Pros
m No runtime error
m Least performance penalty
m Single Address Space
o Cons
m Limited support of programming languages
e Hardware based isolation (MMU)
o Pros
m Support any executable binary
o Cons
m Runtime error

m Performance penalty

IIIIII

Formal Methods

e Model Checking, Our Approach
o Pros: Lightweight
o Cons: Does not prove theorem
® Theorem provering
o Pros: Provable
o Cons: Difficult to use, Heavyweight

o sel4 required 20 person-years for verification

Applying Formal Methods to Basic Functions

Targets

MCSLock

RWLock

Store and restore registers of
preemption

(AArch64 and x86_64)

Delta list

Ring queue

Scheduler and CPU sleep

Scheduler

TIER IV

Properties
Mutual exclusion on weak memory model
Mutual exclusion on weak memory model

Registers are properly restored

Timers are really invoked
Push/pop operations are really FIFO
Work conservation

Priority

Tools
loom

loom

TLA+

Kani
Kani
SPIN

SPIN

TIER IV

Test of Async/await Scheduler

1. We translate source code in Rust to Promela, and test it by using SPIN
a. Promela: Language for specification
b. SPIN: Model checker
2. Test properties
a. Starvation-free
b. Eventually all tasks will be terminated

SPIN
Model
Checker

Source Code
in Rust

Spec
in Promela

Manual

Translation Result

TIER IV

Rust vs Promela

fn get next(&self) -> Option<Arc<Task>> { inline get next(tid) {
let mut node = MCSNode: :new() ; lock (tid, lock_scheduler) ;
let mut data = self.data.lock (&mut node) ;
int head;
// Pop a task from the run queue.
let data = match data.as mut() { start_get next:
Some (data) => data,
None => return None, if
}; :: atomic { queue ? [head] -> queue ? head };
lock (tid, lock_info[head])
loop {
let task = data.queue.pop_front()?; if
tasks[head] .state == Terminated ->
// Make the state of the task Running. unlock (tid, lock info[head]):;
{ goto start get next;
let mut node = MCSNode: :new() ; :: else -> skip;
let mut task info = task.info.lock (&mut fi
node) ;
tasks[head] .state = Running;
if matches! (task info.state,
State: :Terminated | State::Panicked) ({ printf ("Running: task = %d, state = %d\n", head,
continue; tasks[head] .state) ;
}
unlock (tid, lock info[head]):;
task_info.state = State::Running; unlock (tid, lock_scheduler) ;
}
result _next[tid] = head;
return Some (task) ; :: else ->
} unlock(tid, lock scheduler);
} result_next[tid] = -1;

fi

nw

L e el e Lada b A

35

IIIIII

Kernel-level async/await

1. Awkernel provides async/await runtime in kernel.
2. Why async/await?
a. Cyber-physical systems are inherently asynchronous.
b. Callback based programs are suffer from the callback
hell.
3. Problems of conventional async/await runtime libraries.
a. Non-preemptible
b. Multiple scheduling domain

IIIIII

Problems regarding non-preemptible task schedulers

1. Almost real-time scheduling algorithms depend on
preemption.
Example: Earliest deadline first

2. Conventional async/await mechanisms cannot take advantage
of real-time scheduling algorithms.

TIER IV

The multiple scheduling domain problem

e ltis hard to apply scheduling policies to async/await tasks.

How to apply policies? Use the earliest deadline policy.
?/ ? \
/ \
async/await async/await thread thread
task task

async/await runtime scheduler kernel scheduler

TIER IV

Conventional Async/await

1. Async/await tasks are on top of worker threads

2. Cooperative multitasking

3. Multiple scheduling domain

Async/await Async/await Async/await Async/await
Task 0 Task 1 Task 2 Task 3
Thread 0 Thread 1 Thread 2 Thread 3
CPUO CPU1 CPU2 CPU3

TIER IV

Microkernel Style Services

Intel GbE

wake()
Scheduler D(—:l\rllitstla%t:':ier Del\rllit::a%t:':f/er Network TCP/IP Shell
Ll B nElel(E) as Aé?/glﬁll.];vz(i)t)Task as Ag/l:li/ua?/vz?t)Task Service Server
CPUO CPU1 CPU2 CPU3 CPU4 CPU5
interrupt RX/TX queues

Async/await
Task

IIIIII

In-kernel Preemptible Async/await

1. Preemptible
2. Single scheduling domain
3. Can specify a scheduling policy to a task

IIIIII

Task Spawning

awkernel async lib::spawn (
"task name'".into (),
async { /* do something */ 1},
SchedulerType: :RR, // Round robin scheduler
)

.await;

TIER IV

Context Switch of Conventional OSes

Process 1:
Running

Stack
' 1 Memory1

Process 1: «

Interrupt, Syscall

e Processes switch context cooperatively or

preemptively. ,
Process 1:

Store Registers to Context

e Store/restore registers when context
switch.

| Preemptive or Cooperative

Process 2:

Restore Registers from Context
Stack

‘ A Memory?2
Process 2: ’
Running

TIER IV

Context Switch of Async/await in Rust

Process 1:
Call Future::poll()

A,

Task 1:)
e Async/await tasks switch context Running h N
cooperatively. ,
: Stack
e Do not store and restore registers. Task 1: -] Memory

Future::poll() returns Poll::Pending
e Use a shared stack memory.

| Cooperative 7

Task 2:

Call Future::poll()

A

Task 2:

TIER IV

Context Switch of Awkernel

Process 1:
Call Future::poll()

Task 1:
Running

Task 1:
Future::poll() returns Poll::Pending

Cooperative

Task 2:
Call Future::poll()

Task 2:

4

Stack
Memory1

Task 2:
Interrupt

4

Task 2:
Store Registers to Context

| Preemptive

Stack
Memory?2

Task 3:
Restore Registers from Context

4

Task 3:
Running

IIIIII

Target Architectures

o x86_64
o AArché4
o Raspberry Pi Zero 2W/3/4

o Qemu virt

VTN

Awkernel on Raspberry Pi 4

TIER IV

Device Drivers

e Network Interfaces

o Intel GbE

o Intel 10GbE

o Broadcom bcmnet (Raspberry Pi)
e Interrupt Controllers

o xAPIC, x2APIC

o bcm2835 interrupt controller

o GICv2, GICv3 for AArch64
e Raspberry Pi's |O: GPIO, PWM, I2C, SPI

IIIIII

Networking

e Use external TCP/IP library

e smoltcp
https://qithub.com/smoltcp-rs/smoltcp

https://github.com/smoltcp-rs/smoltcp

IIIIII

Block Devices and File Systems

Ongoing...

TIER IV

Applications

e Velodyne VLP16 LiDAR driver
e Localization using lterative

closest first (ICP)

ICP on Awkernel

SS!JJ.;;:JJ:JJJ)-AL

TIER IV

(ifconfig) function

> (ifconfiq)
[0] igb-0000:00:1f.6:
IPv4 address: 192.168.100.64/24
IPv4 gateway: None
MAC address: cc:96:e5:1c:87:c7
Link status: Up (Full duplex), Link speed: 100 Mbps
Capabilities: CSUM TCPv4 CSUM UDPv4 VLAN MTU VLAN HWTAGGING
IRQs: [32]
Poll mode: false

[1] igb-0000:5b:00.0:

IPv4 address:

IPv4 gateway: None

MAC address: 98:b7:85:01:9a:08

Link status: Up (Full duplex), Link speed: 1000 Mbps

Capabilities: CSUM_IPV4 CSUM_TCPV4 CSUM;UDPV4 VLAN MTU VLAN HWTAGGING
CSUM _TCPv6 CSUM UDPv6

IRQs: [33, 34, 35, 36, 37, 38, 39, 40, 41]

Poll mode: false

TIER IV

(task) function

IRQ =

> (task)
Uptime: 1498571515
Tasks:
ID State #Preemption Last Executed name
2 Waiting 0 17027421 network service
3 Waiting 4 1498556182 TCP garbage collector
4 Waiting 1 1497869930 network service:igb-0000:00:1f.6:
5 Waiting 1 1461841869 network service:igb-0000:5b:00.0: IRQ
6 Waiting 0 17044581 network service:igb-0000:5b:00.0: IRQ
7 Waiting 0 16957795 network service:igb-0000:5b:00.0: IRQ
8 Waiting 0 17062003 network service:igb-0000:5b:00.0: IRQ
9 Waiting 0 16957853 network service:igb-0000:5b:00.0: IRQ
10 Waiting 0 16957906 network service:igb-0000:5b:00.0: IRQ
11 Waiting 0 16957959 network service:igb-0000:5b:00.0: IRQ
12 Waiting 0 16958012 network service:igb-0000:5b:00.0: IRQ
13 Waiting 0 21046736 network service:igb-0000:5b:00.0:

IRQ =

33
34
35
36
37
38
39
40
41

TIER IV

Conclusion

1. Rust is safe
a. Safety of Rust have been studied by several academic papers.

b. Rust and Java can prevent 6 and 5 of Top 25 CWEs C/C++ cannot

prevent, respectively.
2. Developing Awkernel
a. Single address space operating system
b. Tested by using formal methods
c. Preemptible async/await

d. Single scheduling domain

IIIIII

Future Work of Awkernel

e Block device and file systems
® Performance evaluation

e Apply to autonomous driving systems

IIIIII

Thanks Again |

