一 ひと味違うソフトウェア技術者になるための回路の入り口 ハードウェアと友だちになって強い技術者をめざそう

名古屋大学 組込みシステム研究センター 舘 伸幸

はじめに

この頃都に流行るもの

IoT, M2M, D2C···

いろいろなものが, ネットワークにつながって, スタンドア ロンでなくなってきました.

従来,組込み装置として完結していたものは,

- ・感知したり駆動したりして,現実世界とインタフェース する物
- ・データを処理したり、人間にやさしく便利につながる物

に分かれつつあります.

組込みソフトウェアの世界

ソフトウェアアプリケーション
ミドルウェア
OS
デバイスドライバ
マイコン
周辺回路
物理,心理か理現象,人間

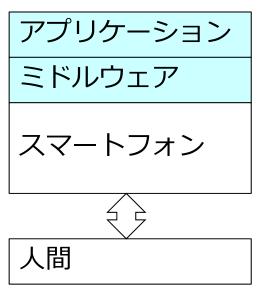
操作はスマホがいいよね

組込み機器は、インテリジェントなセンサやアクチュエータとして動作する時代へ.

アプリケーション ミドルウェア

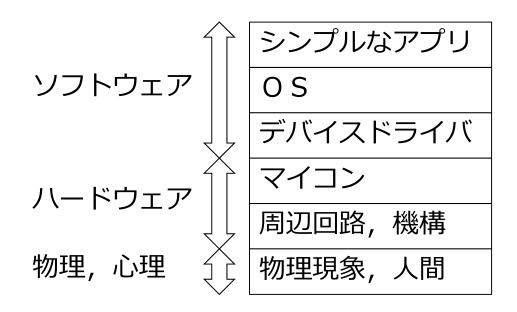
0S

デバイスドライバ


マイコン

周辺回路

物理現象


高度なデータ処理や UIは、クラウドや携帯 端末へ

境界領域へ進出しよう

ハードウェア仕様書の向こう側 ≠ 禁足の聖地.

制御の妥当性などに,積極的に関与できる技術者を目指そう. ハードウェアの担当者と会話できる能力は,貴重かつ重要.

Makerの時代

- ➤ 3Dプリンタの普及で,誰でもメーカーになれる時代.
- ▶ ソフトとハードの両方を扱える技術が必要。
- ▶ 両方できれば、夢を自分や仲間で実現できる.

日常の開発業務でも

ハードウェアに対応できることは、QCDに貢献する.

たとえば顧客の試作基板に手を加えたい場合.

- ・不具合が見つかった
- ・テストピンを立てたい
- ・チェック用のLEDを付けたい

顧客やハード部署に返送 普通に数日のロスが発生.

一方で納期は変わらず...

一歩進んだ技術者目指そう

組込みソフトウェア技術にかかわる,境界領域を 攻略することで,売れる技術者をめざそう

境界領域

複数の学問分野にまたがった知識を要求する 学問分野のこと

今日学ぶこと

入門だけど本格的に

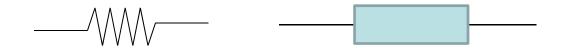
- 1. オームの法則を復習しよう
- 2. マイコンと世界をつなげよう
- 3. やりたいことと電子部品
 - 3.1 温度を測りたい
 - 3.2 明るさを知りたい
 - 3.3 光を出したい
 - 3.4 スイッチをON/OFFしたい
 - 3.5 何かを動かしたい ~DCモータ
- 4. 応用編 その1 Raspberry pi でLEDを灯す
- 5. 応用編 その2 ~もっと明るくしよう
- 6. 応用編 その3 ~ウルトラ明るくするには
- 7. 応用編 その4 ~スイッチの読み方
- 8. あれれ?動かない

ソフトでもハードでも, その「ふるまい」の原理 をよく理解しておくことが大切.

電気回路では、多くのふるまいをオームの法則で理解することができる.

1.1 電圧とは

- 電気には強さがある = 電気の圧力 = 電圧
- 正確には、電位差(電気のエネルギーの差)
- 単位はV
- 1クーロンの電荷が、1ジュールの仕事をする 電位差を1ボルトという
- 回路ではVまたはEで表現する


1.2 電流とは

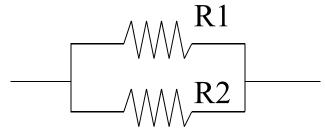
- 回路に電圧を加えると、電気が流れる = 電流
- 単位はA
- 1秒間に1クーロンの電荷が流れる電流を 1アンペアという

回路ではiまたはIで表現する

1.3 抵抗とは ~オームの法則

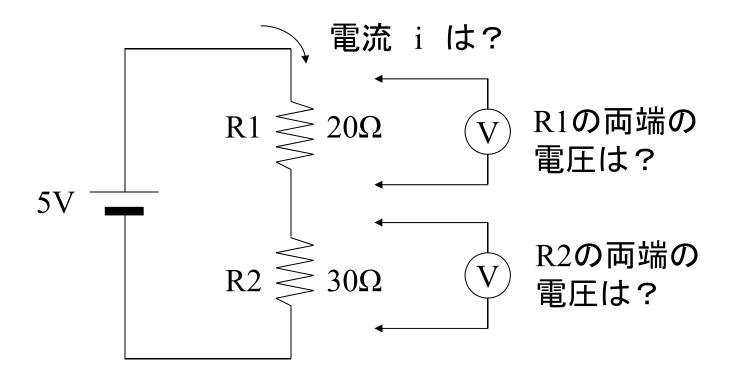
- 回路の電気の流れにくさ = 抵抗
- 単位はΩ
- 回路ではRで表現する
- 回路図では、こんな記号で表現する

- 極性(+/-)はない
- 電圧 E , 電流 I と抵抗 R には,以下の関係がある

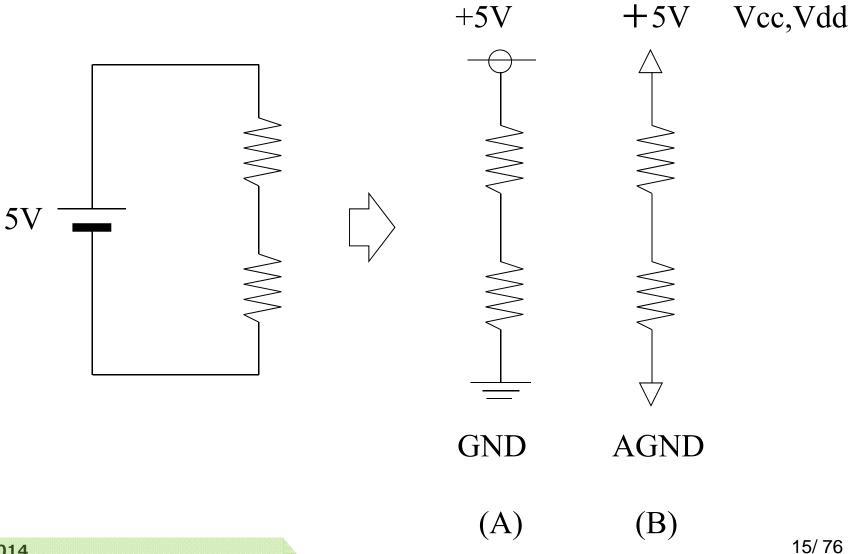

$I \times R = E$

1.4 合成抵抗

- 複数の抵抗を組み合わせてできる抵抗を, 合成抵抗という
- 直列接続


• 並列接続

● 合成抵抗値 R = (R1 x R2) / (R1 + R2)


1.5 抵抗による分圧

● 簡単な回路で理解を深めよう

SWEST2014 14/76

1.6 回路図での表記の仕方

SWEST2014

2. マイコンと世界をつなげよう

ソフトウェアの世界と、現実の世界をつなげるには、 センサーやアクチュエータを使う. つなげ方には、いくつかの定番の方法がある.

2. マイコンと世界のつなげ方

一般に, コンピュータと外部装置(周辺機器)との接続部分を, インターフェースといいます. おおきく, 次の5つの接続方法があります.

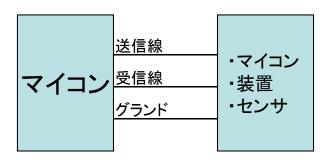
- 2.1 デジタルポート入出力
- 2.2 アナログ入出力
- 2.3 シリアル通信
- 2.4 バス接続
- 2.5 シリアル・バス接続

1 2. マイコンと世界のつなげ方

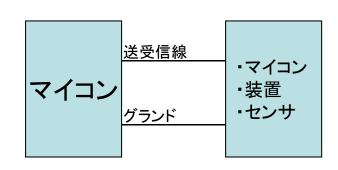
2.1 デジタルポート

- 一般に「ポート」と呼ぶ
- 1つの端子あたり、0か1か(電圧が低いか高いか)だけを扱う。
- 複数の端子をまとめて、Nビット幅のパラレル入出力と して使用することもある。
- 入力専用,出力専用,入出力切り替え のタイプがある.
- 入出力切り替えタイプは、切り替えのレジスタがある。
- 通常,マイコン起動直後は,入力モードになっている.
- 出カモードに切り替えるときは、まず出力したい値を ポート・レジスタに設定してから、出力に切り替える。

1 2. マイコンと世界のつなげ方


2.2 アナログ入出力

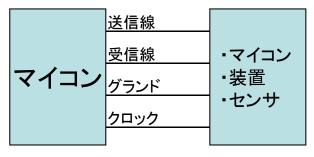
- アナログ入力とは、端子の電圧を読みとる機能
- アナログ入力とは、データ値を電圧として出力する機能
- 入力には、アナログからデジタルへの変換を行う。これをAD変換(Analog to Digital conversion)という。
 単にAD,またはADC,あるいはA/D変換とも表記する。
- 出力には、デジタルからアナログへの変換を行う。これをDA変換(Digital to Analog conversion)という。
 単にDA、またはDAC、あるいはD/A変換とも表記する。
- 変換の分解能はビット数で表現する


2. マイコンと世界のつなげ方

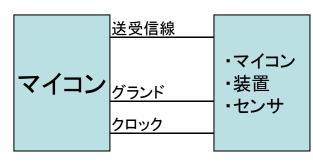
2.3 シリアル通信(1)

- あるデータを、ビット列で順番に送受信する方法
- 大きく,調歩同期(または非同期ともいう)方式と,同期方式がある。
- 調歩同期通信は、一般にUARTと言う。送信、受信にそれぞれ専用線を使うものを全二重 1本で兼用するものを半二重という。

全二重通信



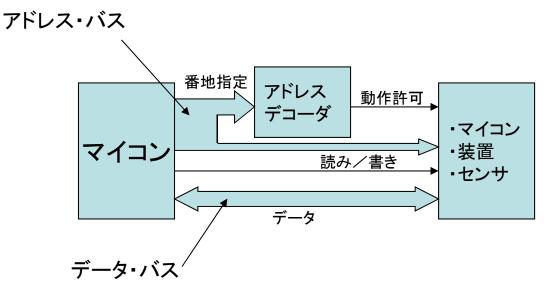
半二重通信


2. マイコンと世界のつなげ方

2.3 シリアル通信(2)

- 同期通信は,クロック同期通信とも言う
- マイコンによって、CSI、SCI、SPIなど、呼称はさまざま
- データ線以外に通信のタイミングであるクロックを送る線が要る.
- クロックを出す方をマスター,受ける方をスレーブという.
- UART同様に全二重と半二重がある.

全二重通信

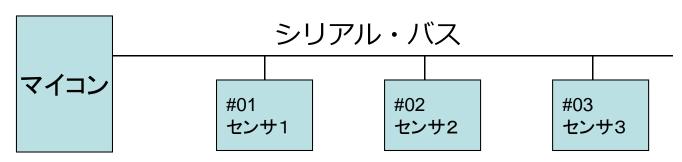


半二重通信

2.マイコンと世界のつなげ方

2.4 バス接続

- センサ,アクチュエータ類を,ポート類を介さず直接マイコンのアドレス空間にハードウェア的に接続する方法.
- マイコンからは、対象物へのアドレス線と、値を授受するデータ線、読み書きを区別するリードライト信号などで接続する。



SWEST2014 22/76

2. マイコンと世界のつなげ方

2.5 シリアル・バス接続

- データの送受信はシリアル方式
- 1対1ではなく、1対Nの通信. つまり、ひとつのマイコンのひとつの通信チャネルに、複数のセンサやアクチュエータを接続できる。
- 接続する物には、それぞれ番地に相当するIDがあり、マイコンはそれを使って通信相手を識別する.
- よく使うものは、I2C規格. LIN、CAN、Ethernetなどのネットワークも、シリアルバス接続の一種.

SWEST2014 23/76

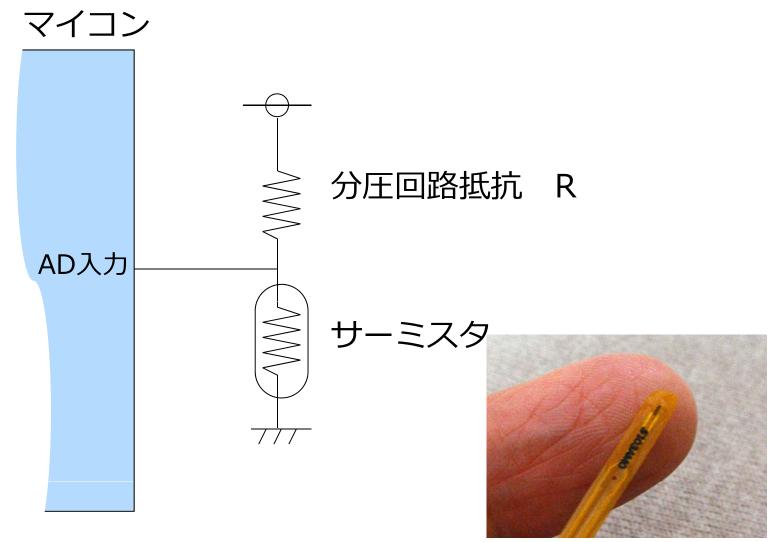
温度や明るさを知りたいとか,何かを駆動したいといった「やりたいこと」には,対応した部品がある.

代表的なものについて, それらをマイコンでどのように使うかを学ぶ.

√ 3. やりたいことと電子部品

3.1 温度を測りたい

代表的な温度センサ

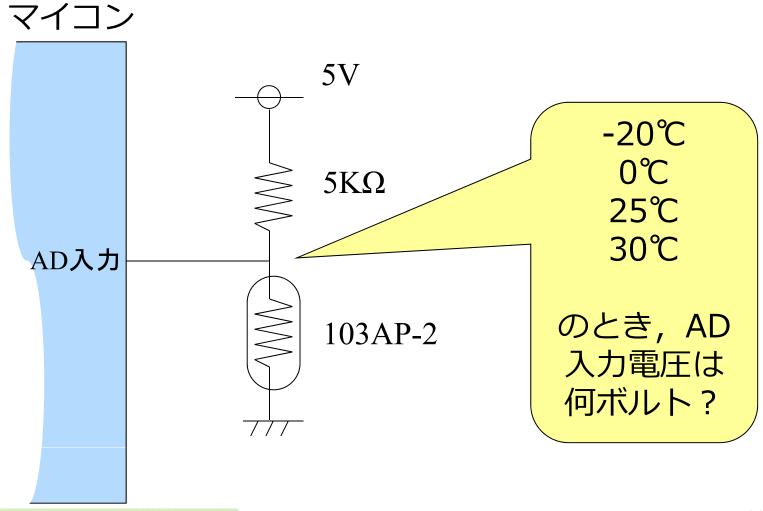

サーミスタ 温度によって抵抗値が変化する

廉価で,もっともよく使われる.

熱電対 温度によって起電圧が変わる 高温(100℃以上)で使われる.

温度センサIC 温度センサと処理回路を組み合わせた物.温度と結果出力が直線 り係になる.出力は電圧(アナログ) やデジタルなどさまざま.

3.1.1 サーミスタを使ってみよう


3.1.2 サーミスタの特性を調べよう

任性	(日	脏	性	4
4H. 4H. —	/1111	Pe i	45	-

温度 (℃)				形名					
/皿/支(〇/	202AP-2	232AP-2	502AP-2	103AP-2	103AP-2-A	203AP-2	503AP-2	104AP-2	204AP-2
-60	207.1	233.2	560.2	600.6	1202	2497	7940	15510	
-50	102.6	115.5	273.7	326.9	583.4	1211	3729	7339	17830
-40	53.94	60.73	142.2	187.4	301.2	624.9	1868	3702	8750
-30	29.69	33.44	77.18	110.9	162.3	335.8	975.9	1943	4461
-20	17.07	19.22	43.61	67.64	90.85	187.2	528.7	1056	2359
-10	10.16	11.44	25.55	42.39	52.76	108.1	296.7	593.7	1291
0	6.261	7.050	15.46	27.25	31.64	64.39	171.9	344.5	730.6
10	3.922	4.417	9.648	17.95	19.56	39.53	102.8	205.9	426.2
20	2.491	2.804	6.186	12.09	12.43	24.94	63.14	126.4	255.6
25	2.000	2.252	5.000	10.00	10.00	20.00	50.00	100.0	200.0
30	1.615	1.818	4.066	8.314	8.096	16.14	39.83	79.59	157.4
40	1.070	1.205	2.725	5.829	5.394	10.69	25.75	51.32	99.36
50	0.7237	0.8149	1.846	4.162	3.671	7.237	17.01	33.79	64.10
60	0.4994	0.5624	1.270	3.022	2.546	4.998	11.48	22.72	42.26
70	0.3513	0.3956	0.8884	2.229	1.783	3.516	7.905	15.57	28.42
80	0.2515	0.2832	0.6314	1.669	1.265	2.516	5.539	10.86	19.47
85	0.2142	0.2412	0.5355	1.451	1.071	2.142	4.669	9.124	16.23
90	0.1831	0.2062	0.4558	1.266	0.9098	1.830	3.949	7.697	13.57
100	0.1354	0.1525	0.3339	0.9737	0.6635	1.352	2.859	5.540	9.616
110	0.1017	0.1145	0.2480	0.7576	0.4903	1.012	2.098	4.040	6.905
120	0.0773	0.0871	0.1867	0.5961	0.3670	0.7675	1.562	2.989	5.033
130	0.0596	0.0671	0.1422	0.4741	0.2780	0.5889	1.179	2.240	3.719
140	0.0465	0.0523	0.1097	0.3808	0.2130	0.4570	0.8998	1.698	2.782
150	0.0366	0.0413	0.0855	0.3087	0.1650	0.3584	0.6946	1.301	2.105
B _{25/85}	3976K			3435K	397	3976K 4220K 4261K 4470			4470K

単位:kΩ

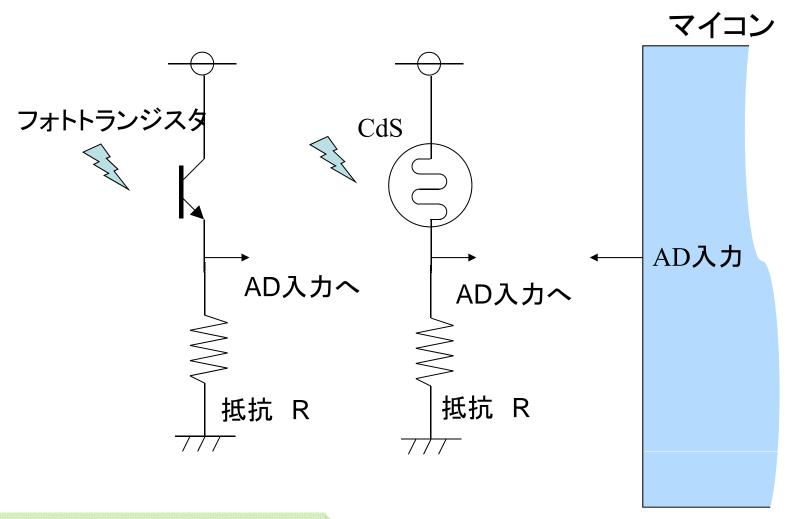
3.1.3 計算してシミュレーションしてみよう

J 3. やりたいことと電子部品

3.2 明るさを知りたい

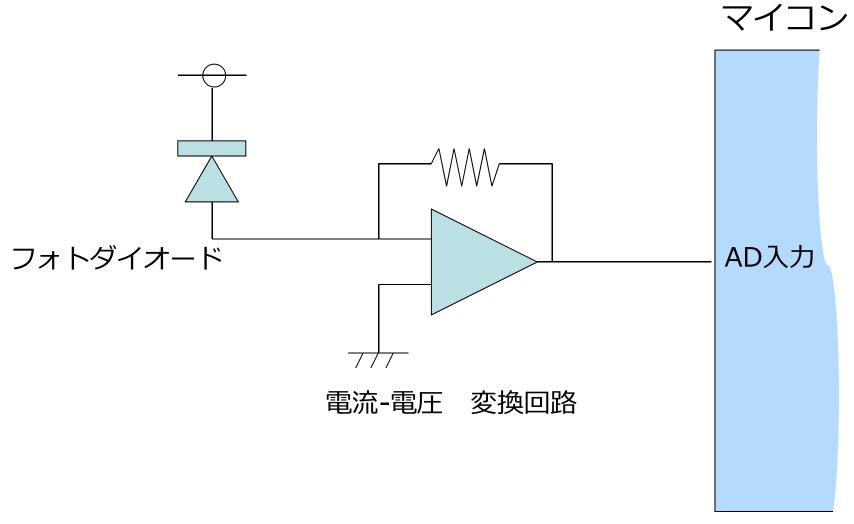
3

代表的な照度センサ


● CdSセル

硫化カドミウム・セル 光の強さで抵抗値が変わる抵抗

フォト・トランジスタ 光の強さで、電流量が変わる トランジスタ


● フォト・ダイオード 光の強さで,発電するダイオード.

3.2.1 CdS/フォトトランジスタの使い方

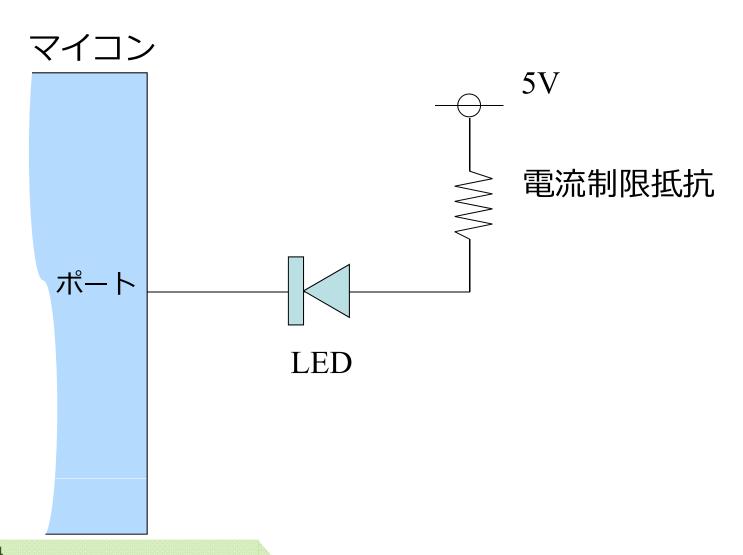
SWEST2014

3.2.2 フォトダイオードの使い方

SWEST2014 31/76

3.3 光を出したい

電気で光るもの
 LED (Light Emitting Diode / 発光ダイオード)
 電球
 エレクトロ・ルミネセンス
 ネオンランプ
 蛍光灯


SWEST2014 32/76

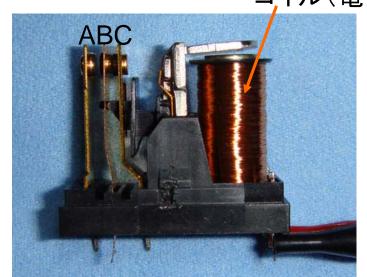
√ 3. やりたいことと電子部品

3.3.1 LEDの特徴

- マイコン回路では、最も一般的な表示手段
- 極性がある。
- 順方向電圧降下値より低い電圧では光らない
- 電流で光る. 通常は50mAが最大値. 一般的には5~10mA の範囲で使用する.
- パワーLEDという照明専用のものもある. 数百ミリA~数Aの電流が必要.

3.3.2 LEDを点灯させよう

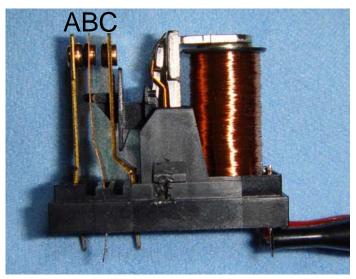
√ 3. やりたいことと電子部品

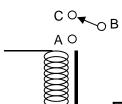

3.4 スイッチをON/OFFしたい

- 電流で動作するスイッチ : リレー
- 電磁石による機械式のものと、半導体式のものがある
- 半導体式のものはSSR (Solid State Relay) とも呼ぶ
- 駆動に必要な電流と、スイッチ側の電流容量に注意する
- 電磁石式は, 電磁石(コイル)の自己誘導発電に注意する

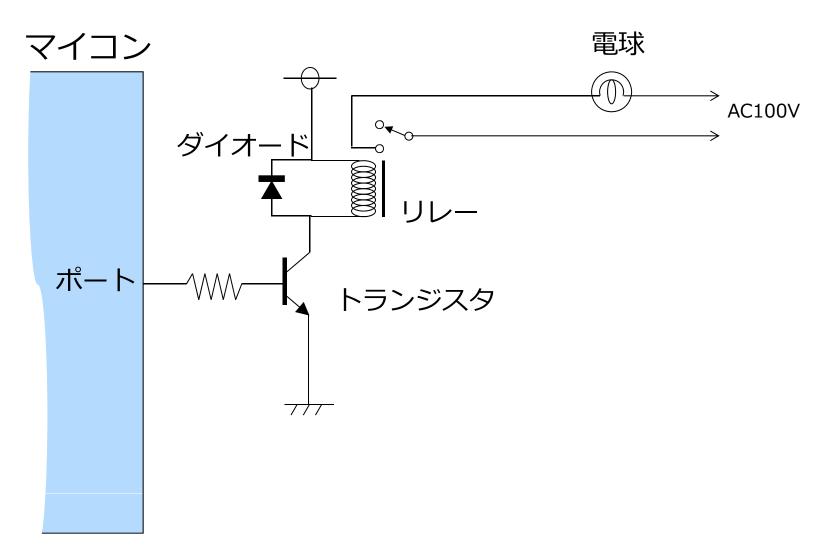
J 3. やりたいことと電子部品

3.4.1 電磁石式リレー


コイル(電磁石)

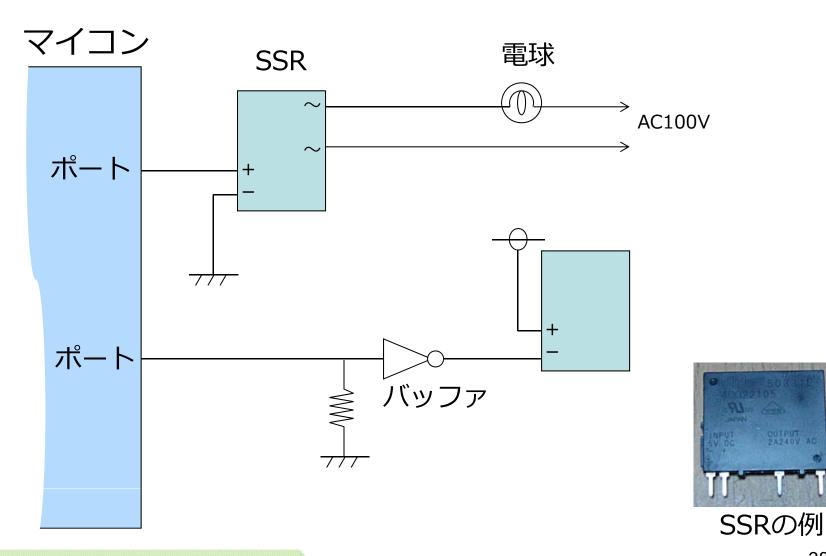

コイルに電流が流れていないとき

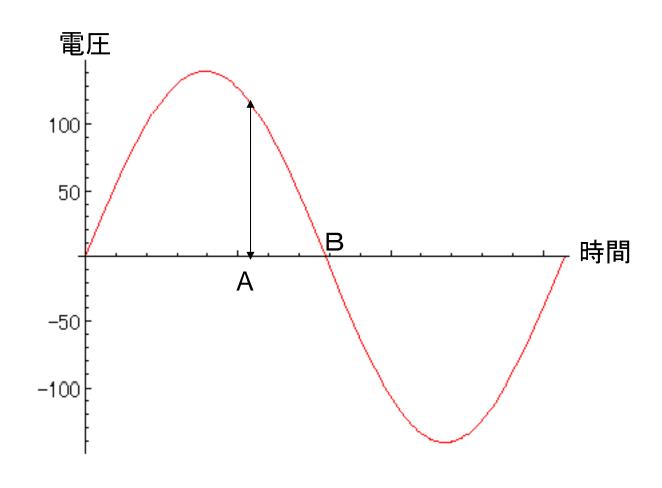
- •接点A-Bは離れている(OFF)
- •接点B-Cは接触している(ON)



コイルに電流を流すと

- ·接点A-Bは接触する(ON)
- •接点B-Cは離れる(OFF)


3.4.2 リレーの使い方


SWEST2014 37/76

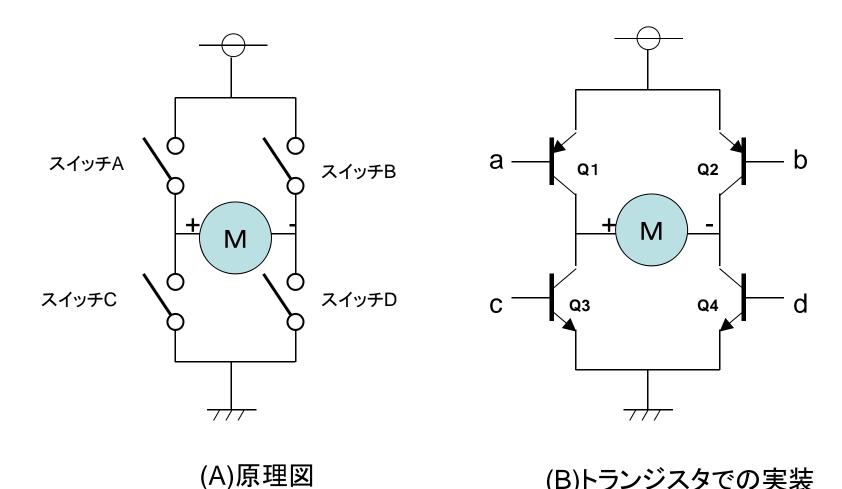
J 3. やりたいことと電子部品

3.4.3 SSRの使い方

3.4.4 ゼロクロス制御について

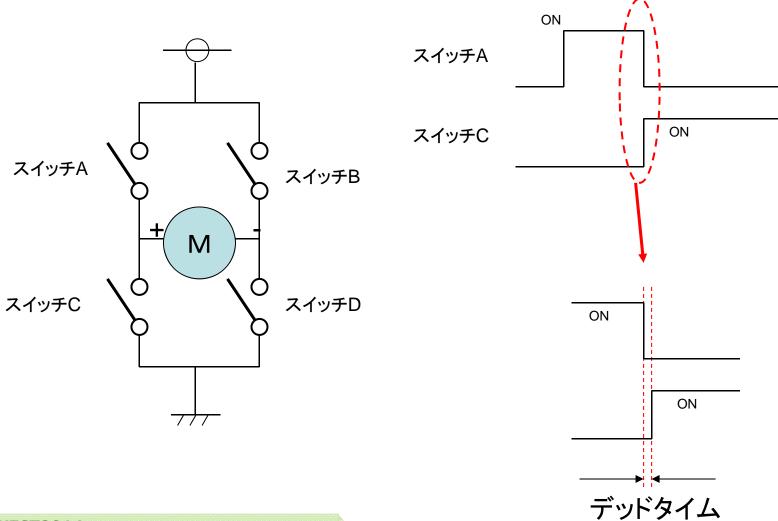
- 3.5 何かを動かしたい ~DCモータ
- 電気で回転運動を得るデバイス
- DCとはDirect Current, つまり直流で動作する
- ブラシ付きとブラシレスの2種類がある

3.5.1 ブラシ付きDCモータ

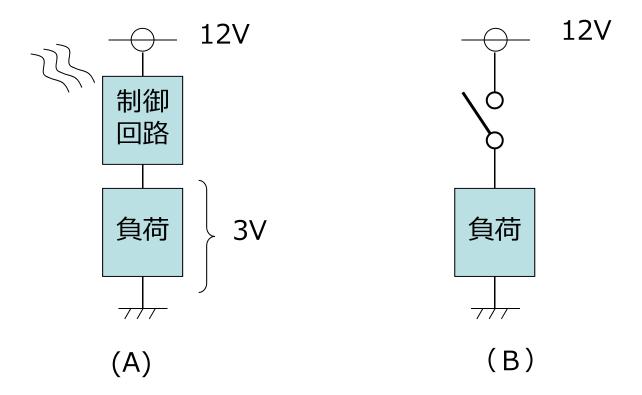

- 電圧を加えれば回転する
- 電圧の極性を変えれば反転する
- 電圧に比例した回転数が得られる
- ノイズが大きい
- 寿命が短い

√ 3. やりたいことと電子部品

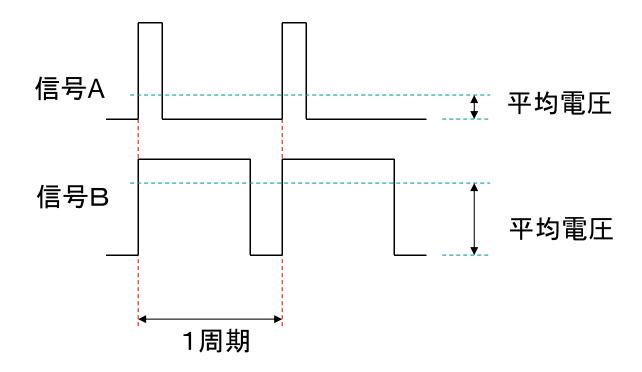
3.5.2 ブラシレスDCモータ


- モータの形状の自由度が大きい
- 接触部がないので、接触不良が発生せず、長寿命.
- 特別な駆動回路を必要とする

3.5.3 ブラシ付きDCモータの駆動回路


(B)トランジスタでの実装

3.5.4 駆動回路のデッドタイム


3.5.5 回転数の制御

- PWM(Pulse Width Modulation)制御を使う
- 電圧制御よりも電力効率に優れる

3.5.6 PWM制御

パルス信号の1と0の比で制御する

SWEST2014 46/76

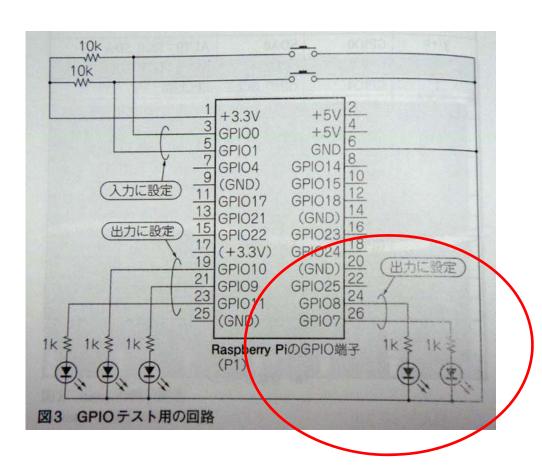
4. 応用編 その1

マイコンでLEDを点灯させる定石「Lチカ」で, 回路へのアプローチのしかたを学ぶ. Lチカは,マイコン回路の Hello world.

まずは雑誌や書籍の記事の再現から始めよう.

✓ 4. LEDを灯そう

4.1 Raspberry pi でLEDを灯す

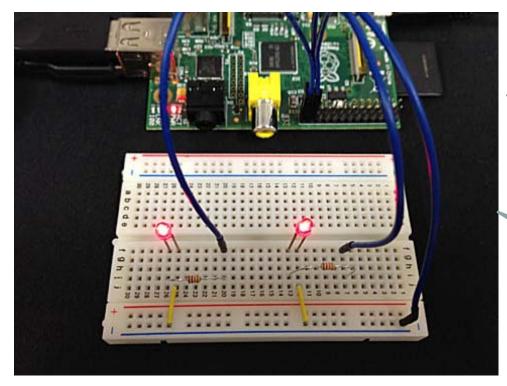


Interface 2012年12月号第4章(桑野さんの記事)に従って, ラズベリーパイでLEDを点灯させてみる.

SWEST2014 48/76

✓ 4. LEDを灯そう

4.2 まずは回路図をよく読む



ソフトでもハードでも 一度に全部やらずに, 少しずつ試すのが入門 のコツです.

とりあえず,この2個 のLEDを実装して 点灯させてみましょう!

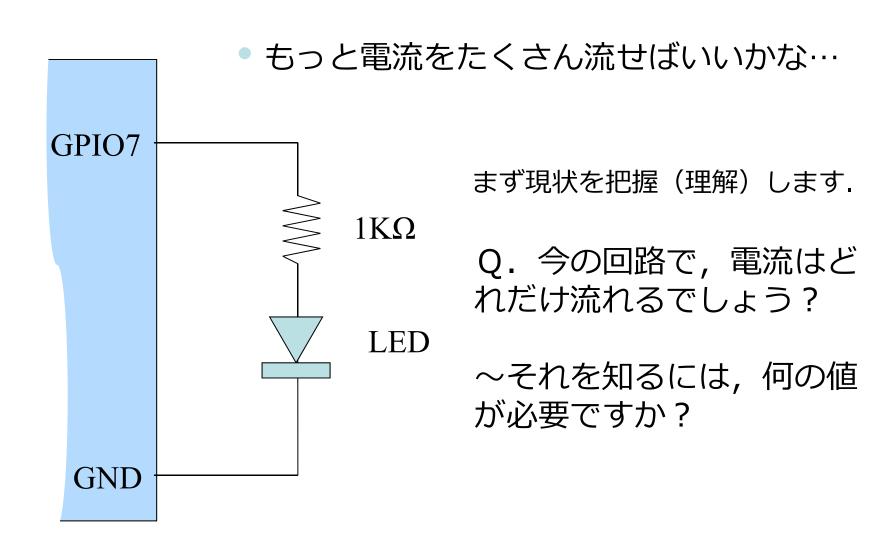
✓ 4. LEDを灯そう

4.3 実装して試す

配線を間違えてなければ, コマンドでこのように光る.

バンザーイ!

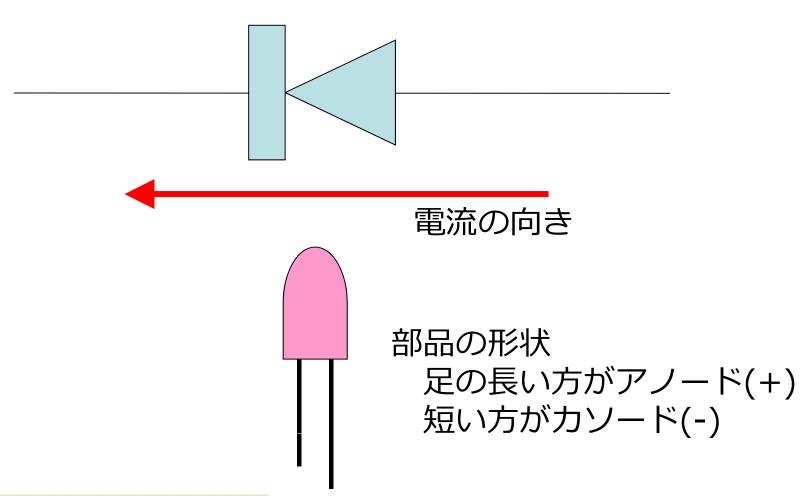
うーん, でもちょっと暗いなあ. もう少し明るくしたいぞ! さて, どうしたらいい?

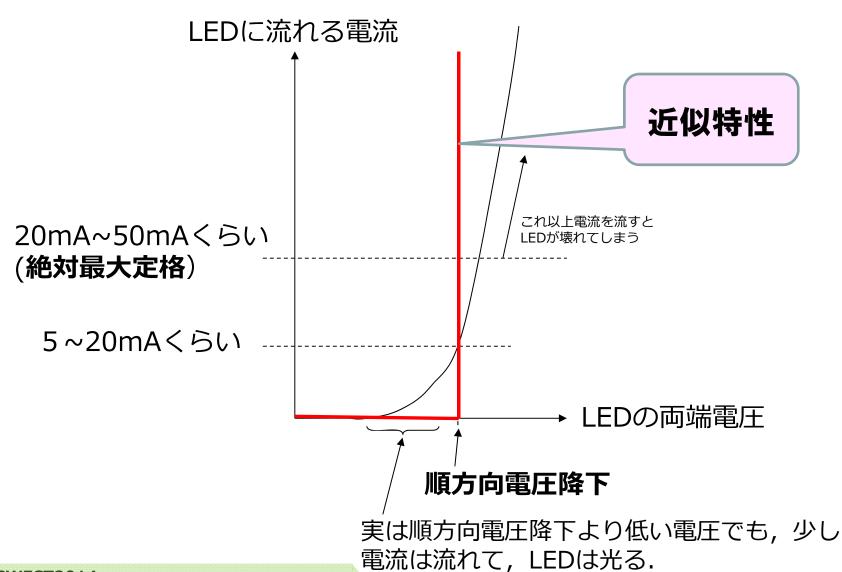

ちょっと手を 加えてみるこ とを考える

5. 応用編 その2 ~もっと明るくしよう

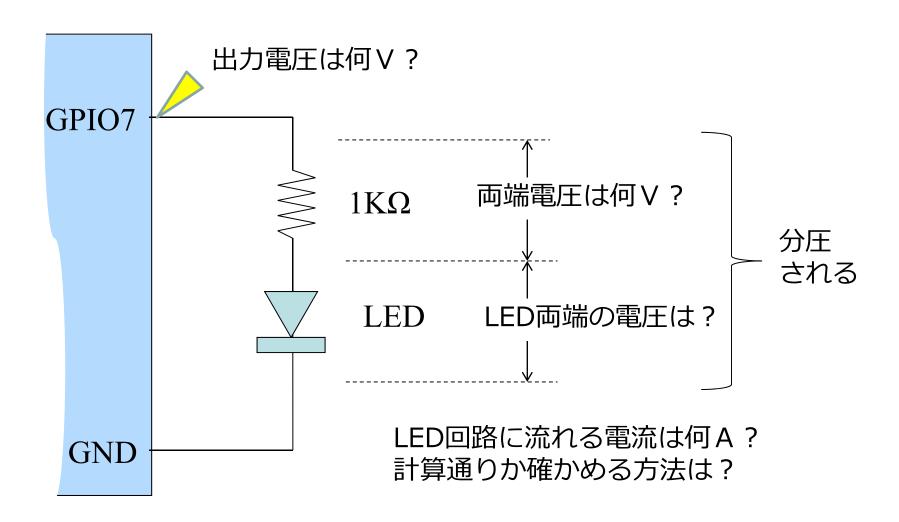
再現がうまく行ったら,自分のアイデアで少し改造してみる. やみくもにエイヤでやるのではなく,きちんと**技術的根拠をおさえて進める**ことで,実力をつけられる.

5. もっと明るくしよう


5.1 明るくするためには


「5. もっと明るくしよう

5.2 LEDについて知ろう(1/2)



5.2 LEDについて知ろう(2/2)

「5. もっと明るくしよう

5.3 現状の回路を調べよう

SWEST2014 55/76

5.4 電流を増やしてみよう

流れる電流は、 $1.5V \div 1000\Omega = 1.5 mA$ 明るくしたいから、10 mAくらい流そうか! そのときの抵抗の値はいくらでしょう?

 $R = E/I = 1.5V \div 0.01 = 150\Omega$

LEDは平気 なはず!

よし、150Ωに変更だ.

…ちょっと待って下さい!!

Raspberry pi は, どのくらい電流を流せるか 考えましたか?

- 5.5 マイコンと電流
- マイコン(I/Oポート)で扱える電流には、2つの限界値がある。
 - 1. 1つのピン(ポート)あたりの上限値
 - 2. マイコン全体としての上限値
- マイコンから流れ出す電流を,吐き出し電流 マイコンに流れ込む電流を,吸い込み電流という.
- マイコンによっては、吐き出しと吸い込みで上限値が 異なる場合があるので注意が必要。

5.6 GPIOは何A流せるの?

GPIO 1端子あたりは, 2~16mAと表記されている!?

GPIO Pads Control2という資料に詳細が記載されている 参考) http://ja.scribd.com/doc/101830961/GPIO-Pads-Control2

それによると、どうやら流せる電流の上限値をソフト設定で選択できるらしい.

初期値は8mAになっている.

10mA流すには、設定値を変更する必要があるようだ.

http://www.scribd.com/doc/101830961

Address

0x 7e10 002c PADS (GPIO 0-27)

0x 7e10 0030 PADS (GPIO 28-45)

0x 7e10 0034 PADS (GPIO 46-53)

Bit(s)	Field Name	Description	Туре	Reset
31:24	PASSWRD	Must be 5A when writing: Accidental write protect password	w	0
23:5		Reserved - Write as 0, read as don't care		
4	SLEW	Slew rate 0 = slew rate limited 1 = slew rate not limited	RW	0x1
3	HYST	Enable input hysteresis 0 = disabled 1 = enabled	RW	0x1
2:0	DRIVE	Drive Strength 0 = 2mA 1 = 4mA 2 = 6mA 3 = 8mA 4 = 10mA 5 = 12mA 6 = 14mA 7 = 16mA	RW	0x3

Beware of SSO(Simultaneous Switching Outputs) limitations which are not only device dependent but also depends on the quality and the layout of the PCB, amount and quality of

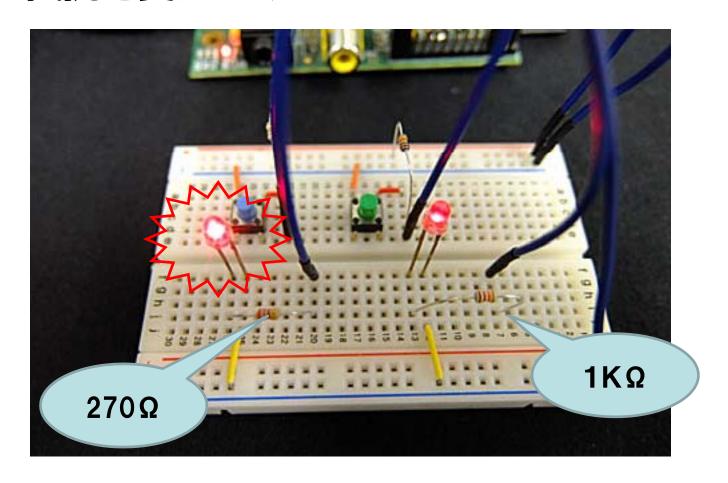
SWEST2014 59/76

5.7 GPIOは全部で何A流せるの?

ネットで検索すると、最大51mAであるようだ。

参考) 実測結果を公開しているサイト

http://www.thebox.myzen.co.uk/Raspberry/Understanding Outputs.html


インターフェースの記事では,5個LEDを接続します.1個あたり10mA流して,全部点灯すると,50mA. 5%の誤差を見込むと,最大で52.5mA. これでは**最大定格を越えてしまう**かも!

GPIOの設定不要で(8mA以下),合計電流も余裕を持たせる意味で,LED1個あたり5mA流す抵抗値を計算してみよう.

SWEST2014 60/76

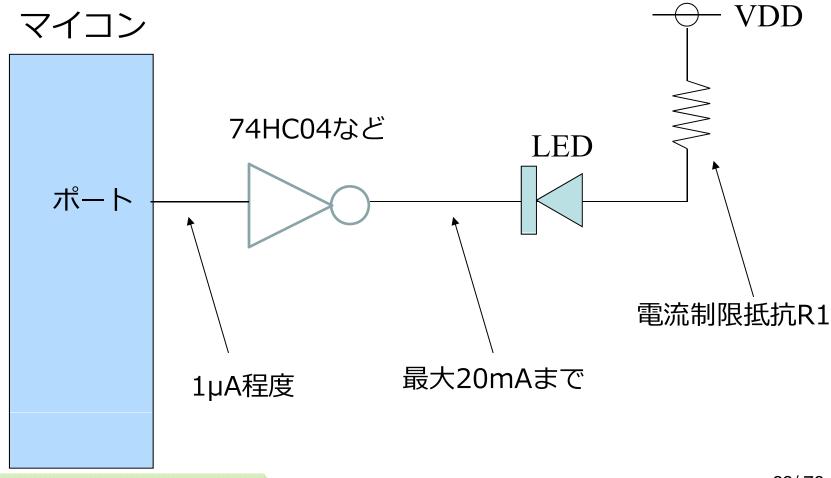
5. もっと明るくしよう

5.8 抵抗を変えてみた

安全な値でLEDを明るくできた.

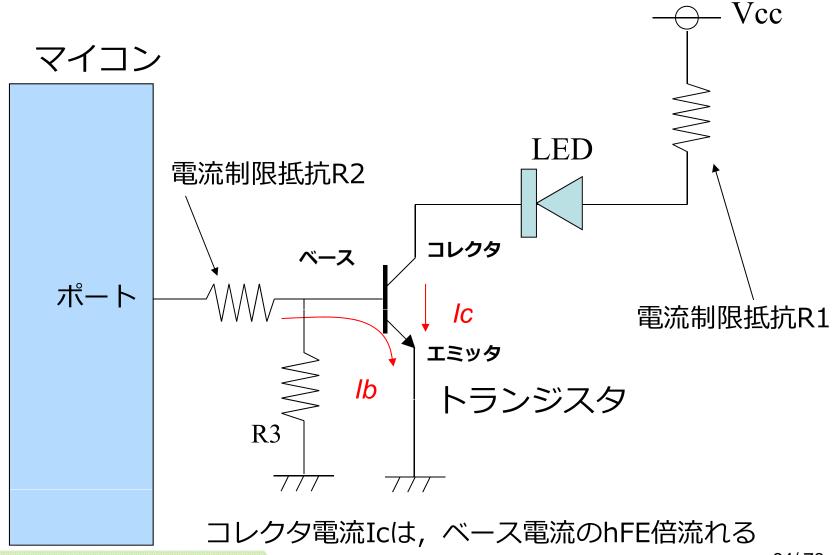
SWEST2014 61/76

6. 応用編 その3 ~ウルトラ明るくするには


興味を持てたら, さらに機能や性能を上げる方法 を考えてみましょう.

書籍で勉強したり、いろいろな事例を検索して実際にやってみましょう.

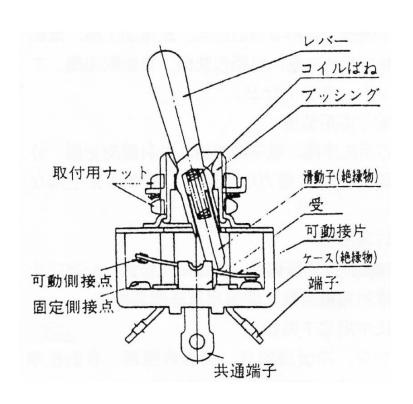
6. ウルトラ明るく灯すには

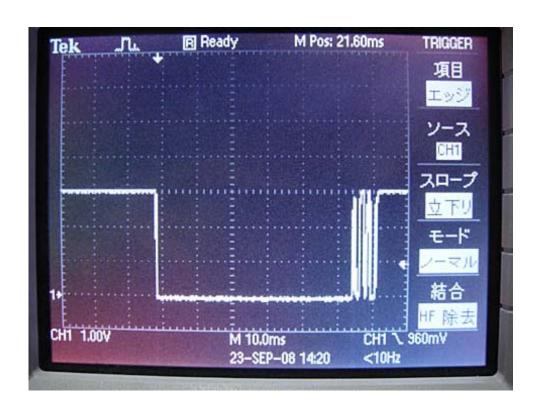

6.1 大きな電流を別の部品で制御する

たとえばゲートICを使う方法が簡単.

6. ウルトラ明るく灯すには

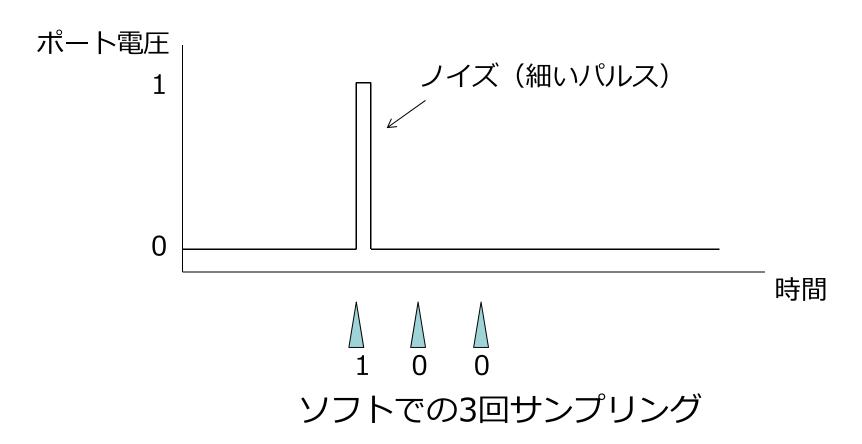
6.2 もっと大きな電流を流したいとき




SWEST2014 64/76

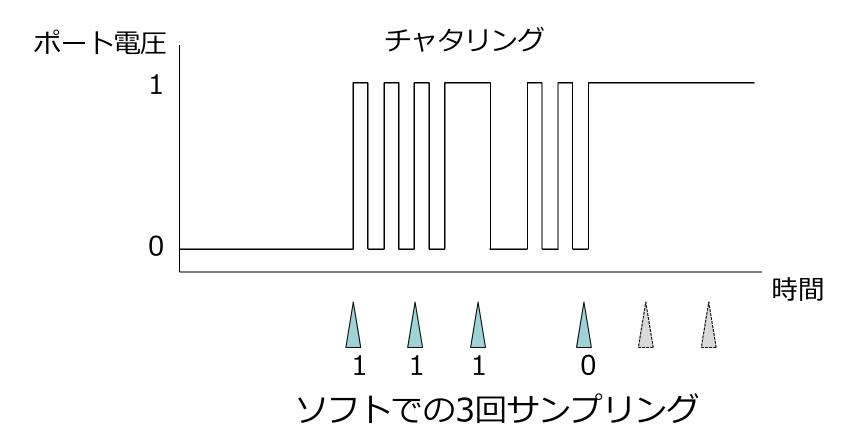
LEDの次によく使う部品が,スイッチ. 単純な部品ですが,そのふるまいに応じた プログラミングをする必要がある.

7.1 スイッチには, チャタリングという現象がある


出典:「トグルスイッチ」、「制御機器の基礎知識 選び方・使い方 スイッチ・表示灯編」 社団法人日本電気制御機器工業会発行、108頁、図7.1 シーソ方式の内部構造

SWEST2014 66/76

7.2 ソフトではよく, 「3回読んですべてONだったらON」 という処理を見かけるけど.


- なぜ3回?
- 3回で十分(または多すぎ)なのか?

7.3 ノイズでの誤動作を回避したい場合

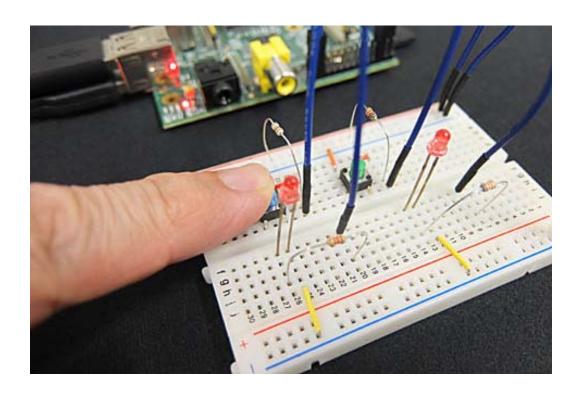
たまたまノイズで1と感知しても、その後0を読んで誤動作を回避する. (3回読み取る時間ほど長いノイズはないだろうという想定)

7.4 チャタリングの影響を避けたい場合

たまたま3回1を読み取るかもしれない. 次の読み取りで、たまたま0を読み取るかもしれない

- 7.5 チャタリングに限らず,制御対象やソフトの ふるまいについて,よく理解しておこう
- チャタリングが起こる時間は,スイッチの種類によって違う.
- 遅いマイコンでは、サンプリング周期がゆっくり なので、たまたまうまくいくことがある。
- 速いマイコンでは、複数回読み込み処理しても、 機械の動作からみると「一瞬」でしかない。

8. あれれ?動かない


ハードウェアでトラブルに出会うと, お手上げな 気持ちになりがちです.

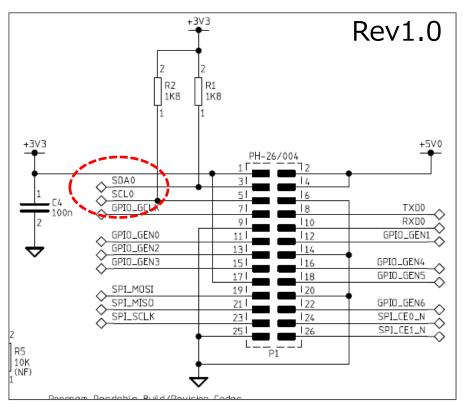
しかし、解決の方法はソフトウェアと同じです. リストやUMLを見直すように、実際の回路や回路図 を丁寧に見直せばよいのです.

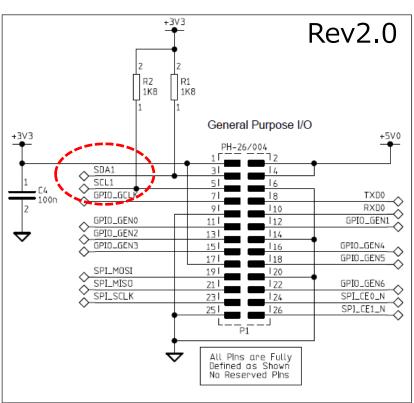
回路図は,「見慣れない」だけで,決して難しいものではありません.

√8. あれれ?動かない

8.1 スイッチを付けてみたけれど

スイッチを押すとLEDが点灯するようにプログラミング したはずが,点かない.

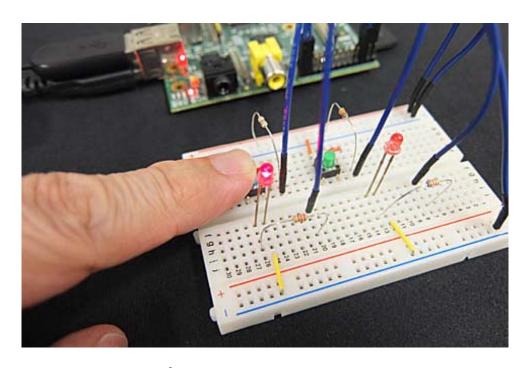

ソフトも配線も何度も見直したけど,合っていそう!?


SWEST2014 72/76

√ 8. あれれ?動かない

8.2 こんなトラブルもある.

Raspberry piの回路図を探してみると, R1.0とR2.0の2種類が見つかります. 比べてみると…



SDA0とSCL0は、GPIO0,1に、 SDA1とSCL1はGPIO2,3に相当します. 記事掲載後に、Raspberry piの仕様が変わったらしい.

7. あれれ?動かない

8.3 完動 (感動)

プログラムの制御ポートをR2.0ボードに合わせて修正して,無事に動作した!

回路図を書けなくとも、「読める」と、思わぬトラブルからの脱出にも役立つ.

SWEST2014 74/76

最後に

- ハードウェアは、踏み込めない魔境ではありません。
- 回路図を、書けなくてもよいので「読める」ように しましょう。
- 代表的な部品のふるまいや特徴について興味を持ちましょう。
- それだけで、ハードウェア技術者と「話をすること」ができるようになります。
 これは、よりよい製品を作るために、とても役立つ能力として活かせます。

SWEST2014 75/76

FIN

SWEST2014 76/76