

Create2を動かす(1時間) ■モデル図の変更

- m2tプラグインの設定変更
- Raspberry piへ転送
- Raspberry piとCreate2の接続 動作確認
- 仕様変更・・・(55分)
 - キックオフ
 - ■モデル図の変更
 - 動作確認
- 開発は続く(5分)

Create2で動かす

確認してもらいました。 合宿も本番を迎え、いま目の前には、本物のCreate2があります。

駆動開発を実践していきます。

を動作させましょう。

のベースとなるものになります。

事前実習では、掃除機型ロボットCreate2を模擬したPreCreate2で動作を

この「モデル駆動開発~実践編~」では、実物のCreate2を用いてモデル

まずは、事前実習で作成したモデルを(少しだけ)修正を加えてCreate2

ここで、作成したモデル、生成したソフトウェアは、午後から始まる実習

クラス図の名前を変更する • $PreCreate2 \rightarrow Create2$

 アクティビティを変更する • preCreate2 \rightarrow create2

調整してみてください

 set_next_distanceの使い方については、配布したAPIリファレンスを 参照してください(PreCreate2用と若干の違いがあります)

■ 会場のスペースもあるのでset_next_distanceの設定距離を適度に

アクティビティを変更する • preCreate2 \rightarrow create2

会場のスペースもあるのでset_next_distanceの設定距離を適度に 調整してみてください

set_next_distanceの使い方については、配布したAPIリファレンスを 参照してください(PreCreate2用と若干の違いがあります)

entry / self.cnt = 0

entry / print("FORWARD") create2.set_next_distance(500,True) do/create2.drive(100,0)

の期状態の追加

■ 最初に明示的にself.cntを0に初期化する状態を作ります。 初期状態からFORWARDにはCreate2本体中央のボタンで遷移するようにします

<u>Create2</u>		~	Add
Template Engine			Groo
Template Dir			C:¥Users ^y
Destination Path			C:¥Users ^y
Default	~	ру	
Global	\sim	main	₽У
Add tem	plati	3	

■ Create2用のプラグイン設定を行う

	×
92	
MDD	
	×
	×
OK)ancel

Raspberry piへの転送

scp (転送したいファイル) (転送先アドレス):(転送先ディレクトリ)

例:

・scpコマンドで転送する

scp *.py pi@192.168.20.200:~/LED-CAMP/

ターミナルソフトを起動する(Teratermや、Poderossa、Cygwin等)

■ 接続するIPアドレスは、配布したネットワーク構成の資料を参考

Raspberry piとCreate2の接続 Create2の接続

Raspberry piの接続

※シールド基板・コネクタは仮のものです 当日は形状が異なる場合があります

台を接続

Raspberry Piを接続

ケーブルの取り付けと本体への固定

動作權認

ssh (接続先アドレス) python main.py

例: ssh pi@192.168.20.200 python main.py

 SSHクライアントを起動する(Teratermや、Poderossa、Cygwin等) SSHコマンドで接続する ■ 接続するIPアドレスは、配布したネットワーク構成の資料を参考 実行する

会場のスペースもあるのでset_next_distanceの設定距離を適度に 調整してみてください

伯祿愛頃

Create2は無事に動いたでしょうか? らいます・・・

もらう予定でした

この四角形を描くように動かすモデルをベースに午後からの実習をしても

去る日曜日・・・実習課題を見直していると、やはり四角形では面白くな いと思いなおしました。そこで、仕様を変更したいと思います。

60deg

180cm

60deg

- 六角形の1辺の長さは180cmです

60deg

180cm

60deg

直進距離が判明しているので直進距離を設定します。

 set_next_distanceの使い方については、配布したAPIリファレンスを 参照してください(PreCreate2用と若干の違いがあります)

モデル図変更

90deg旋回ではなく、60deg旋回へ変更します

set_next_angleの使い方については、配布したAPIリファレンスを 参照してください(PreCreate2用と若干の違いがあります)

ひとまず、変更なし

開発院校院

作成ができました。

しかし、開発はまだまだ続きます。 ソフトウェアを作成して頂きます。

今回の演習で学んだことを生かせば、これからの開発も円滑に行え ることでしょう。

今回の演習で、MDDを用いて六角形を描いて走るソフトウェアの

これからこのソフトウェアをベースにして、より複雑な走行をする

